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Abstract 

The Internet of Things (IoT) is a worldwide network including all identifiable heterogeneous objects 

around us such as smartphones, laptops or smart sensors that can connect to the Internet by using a 

wide range of technologies. IoT is able to provide accessibility to the Internet for all physical objects 

since it is a hybrid network of the Internet and diverse networks with heterogeneous nodes. Generally, 

due to the insecure nature of the Internet as well as Wireless Sensor Networks, which are the main 

components of IoT, implementing security mechanisms in IoT seems necessary. To deal with 

intrusions that may occur in IoT, a novel multi-faceted intrusion detection system is proposed in this 

thesis which can detect both cyber-attacks and insider-attacks of IoT. 

 

This study proposes an offline misused-based technique based on a modified supervised Optimum-

Path Forest (OPF) to detect the external (cyber) attacks of IoT. In this technique, k-Means algorithm, 

along with the social network analysis (i.e., centrality and prestige), is employed to overcome the 

problem of the scalability of the input large dataset and prune the training dataset with the aim of 

identifying the most informative samples. The proposed method uses a high-dimensional NSL-KDD 

dataset as the simulated traffic of the Internet; hence, this thesis presents a novel hybrid method 

based on Binary Gravitational Search Algorithm and Mutual Information to reduce the dimensions 

of the original input dataset. The experimental results show the superior performance of the proposed 

approach in detecting and identifying the types of cyber-attacks. 

 

In addition, this study provides a hybrid of anomaly-based and specification-based real-time intrusion 

detection system to determine routing attacks in 6LoWPAN (the main effort to make the concept of 

real IoT) based on the unsupervised OPF. The proposed method, which is an efficient security 

technique not only can detect internal (insider) attacks of IoT but also can determine the malicious 

nodes as the cause of the IoT’s insider-attacks. In addition, the presented model is developed based 

on the MapReduce architecture in order to obtain the ability of distributed detection. 
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 Introduction 
 
 
 
Internet of Things (IoT) is a worldwide network in which the identifiable heterogeneous physical 

objects can connect to the Internet by using a wide range of technologies. Actually, the main idea of 

IoT is developing an autonomous world including a series of smart objects, which are available from 

anywhere at any time, and they also are able to connect with each other, exchange information and 

even make decisions (Rghioui, Khannous, & Bouhorma, 2014). In the IoT’s approach, the different 

heterogeneous objects (e.g., PCs or laptops, smartphones, smart sensors, electronic home appliances, 

and surveillance cameras) can be directly connected to the Internet or other networks by employing 

a wide range of different technologies such as radio frequency identification (RFID), embedded 

sensors, and miniature actuators without using a special interface tools such as PCs. Therefore, in the 

near future, IoT will be the base of many services that living in a developed country depends on the 

reliable and appropriate access to the obtained services by IoT. Wireless Sensor Networks (WSNs) 

are one of the important components of IoT in which the nodes can communicate with each other 

and also other smart systems, autonomously (Shahid, 2013). One of the main efforts to make the 

concept of real IoT is the IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs) 

that is proposed and standardized by the Internet Engineering Task Force (IETF) workgroup. 

6LoWPAN is a wireless sensor network based on IPv6 that integrates the IP-based infrastructures 

and WSNs by specifying how IPv6 packets are be routed in constrained networks such as IEEE 

802.15.4 networks (Shahid, 2013). As can be seen in Figure 1-1, the resource-constrained devices 

(from the aspect of radio range, processing power, and battery life) such as sensors can connect to 

the Internet or other networks through 6BR1 (Wallgren, Raza, & Voigt, 2013). 

 

 
Figure 1-1: The architecture of Internet of Things 

 
One of the important issues in IoT is security. Like other kinds of networks, providing security for 

IoT can be done by using the prevention and the intrusion detection mechanisms. The prevention 

mechanism is based on different methods such as cryptography. On the other hand, in the intrusion 

                                                      
1 6LoWPAN Bourder Router 
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detection mechanism (as the second layer of defense that this thesis focuses on it), identifying threats 

is done by using intrusion detection systems (IDSs). Intrusion detection systems are 

software/hardware systems that are able to detect malicious behaviors in networks or host systems. 

It is worth noting that the purpose of this thesis is providing a special IDS for IoT based on the 

machine learning algorithms, which can detect intrusions and identify the types of attacks in IoT, as 

well. 

 

1.1 Problem Statement 
With the fast growth of technologies in computer networks, especially the Internet, which has led to 

a dramatic increase in computer networks' applications, security has become the main challenge of 

different types of computer networks such as 6LoWPAN (a real IoT’s deployment). IPv6 in IoT 

provides Internet connectivity for all the physical objects. Because IoT is a hybrid network that is 

consisted of the Internet and some kind of networks including heterogeneous and constrains objects 

(e.g., WSNs), working on the IoT’s security for employing the standardized security mechanisms in 

IoT is a necessary approach (Shahid, 2013). By using the standard techniques (e.g., encryption and 

access control), the communications in IoT are to some extent safe. But due to the unsafe nature of 

wireless communications, these prevention mechanisms are not able to cope with all the attacks, 

especially insider-attacks (e.g., routing attach). Moreover, in IoT, the heterogeneous and resource-

constrained objects can directly connect to the Internet through IPv6 and 6LoWPAN networks. 

Despite the confidentiality and integrity of 6LoWPAN messages, which are provided by employing 

the communication security, there are many attacks that can be happened for disrupting the normal 

functionality of a network, consequently countless problems in access and security services of a 

network (Wallgren et al., 2013). In addition, due to the wireless nature of IoT, every physical object 

can be easily threatened through various attacks (e.g., Denial of Service (DoS), which makes network 

or machine resource unavailable) by both of the Internet and WSNs. Therefore, another security 

mechanism should be employed for identifying some kind of attacks that cannot be detected by the 

standard prevention mechanism. Vividly, the intrusion detection systems (IDSs) as the most effective 

solution can be engaged to detect attacks or malicious behaviors in networks or machines. 

 

The Internet of Things as an emerging concept has a novel architecture in which the physical 

heterogeneous objects, which are mostly resource-constrained devices, can be detectable and 

accessible from anywhere through an IP address. It seems providing a novel security mechanism by 

introducing an appropriative IDS for IoT is necessary. There are several intrusion detection systems 

that have been introduced for WSNs as well as IP-based networks. But most of them have not proper 

performance for IP-based WSNs such as 6LoWPAN. Roughly speaking, since the number of IDSs 

that were specifically designed for IoT is limited, there are few solutions for overcoming the security 

challenges of IoT. For instance, despite the efficiency of cryptography in the security mechanism, it 

is necessary to develop a specific IDS for IoT for confronting with the network or machine threats; 

therefore, employing an efficient intrusion detection technique for the Internet of Things is a hot 

research area. 

1.2 Goal and Research Scope 
Today, 6LoWPAN is still known as a new approach in computer networks that has a high capacity 

for researching. The purpose of this thesis is providing a novel method for intrusion detection in 

6LoWPAN as a real IoT. For achieving this goal, the main features of 6LoWPAN should be 

considered to provide a suitable structure for analyzing IoT’s behaviors as compared to the other 
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kinds of networks’ behaviors. Because the 6LoWPANs consist of a hybrid of IEEE 802.15.4 and 

IPv6 networks, the traffic patterns of them are different in comparison with to the regular networks. 

Indeed, the traditional solutions that were used for detecting intrusions in regular networks cannot 

be useful for IoT. Therefore, the IDSs for 6LoWPAN should be designed and developed regarding 

various traffic patterns of WSNs and IP-based networks.  

 

Roughly speaking, every layer of 6LoWPAN stack can be threatened by diverse attacks. The routing 

attacks threaten the networks by controlling the information flow of networks. Hence, most of the 

attacks focus on sabotaging the network layer through routing attacks. Note the 6LoWPANs use a 

specific routing protocol named RPL2 for routing the packets. This protocol is a distance-vector 

protocol introduced and standardized by the ROLL3 workgroup as a private routing protocol for 

6LoWPAN. On the other hand, because the 6LoWPAN network is WSN that its objects can be 

identified by the IP addresses, the 6LoWPAN network can be threatened by every network layer 

attack, especially DoS attacks (Le, Loo, Lasebae, Aiash, & Luo, 2012). 

 

As mentioned earlier, due to the specific architecture of Internet of Things, this network can be 

attacked from all the Internet and 6LoWPAN threats. In other words, IoT can be threatened by cyber 

(external) attacks and insider (internal) attacks, which are raised by the Internet and 6LoWPAN, 

respectively. Therefore, to obtain a security mechanism in multi-faceted detection, protecting IoT 

against external and internal threats is very important (Shahid, 2013). Generally, the main goal of this 

thesis is proposing an effective method for intrusion detection and identification of attacks (i.e., 

cyber-attacks and insider-attacks) that can be occurred in IoT. In fact, this thesis essentially follows 

two main objectives: 

 

1) Cyber-attack identification: As can be seen in Figure 1-1, in IoT, the IP-based WSNs such as 

6LoWPAN can connect to the Internet or other LANs4 through 6BR. Therefore, the objects of 

these kinds of networks can be threatened by cyber-attacks of the Internet. For example, in R2L5 

attacks, an end-user on the Internet can illegally access to the private information of 6LoWPAN’s 

objects. Hence, the proposed intrusion detection method should be able to detect some kind of 

attacks that can be threatened IoT by the Internet (or LANs). 

2) Insider-attack identification: Another goal of this thesis is to provide the ability to detect internal 

attacks of IoT. Note this thesis focuses on detecting selective forwarding and sinkhole as two 

well-known DoS attacks in WSNs, which have a great malicious effect on the performance of 

6LoWPAN. 

Generally, the following items will be considered in the proposed approach: 

 Proper efficiency: Because the most objects of 6LoWPAN are constrained (especially in 

terms of processor and memory), the proposed method should have a reasonable 

computational and memory overhead. 

 The ability to detect new attacks: As mentioned earlier, in the IoT approach, because the 

heterogeneous objects can connect to the unreliable Internet, the possibility of anonymous 

                                                      
2 Routing Protocol Low Power and Lossy Networks 
3 Routing Over Low power and Lossy networks 
4 Local Area Networks 
5 Remote to Local 
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attacks occurring in this kind of network is very high. Therefore, the proposed intrusion 

detection system should be able to detect new attacks. 

 The performance of IDS in terms of DR6 and FAR7 is an important concern that should be 

considered in every kind of IDSs. Therefore, the proposed methods should have high DR 

and low FAR as much as possible.  

1.3 The key Innovations 
As can be seen in the thesis’s title, this study focuses on employing proper machine learning 

techniques for detecting various threats that can occur in IoT. To the best knowledge of the author, 

this approach is one of the pioneer studies that tries to employ the idea of machine learning methods 

in IoT security for proposing a proper IDS that meets the IoT’s specification. In other words, 

employing the machine learning methods for detecting intrusion in IoT, is surely a novel approach 

in IoT security. In sum, for presenting the various aspects of the thesis’s innovations, Figure 1-2 

depicts the general schema of the proposed model. The main contribution of this thesis which will 

be introduced in Chapter 3, includes the following sections: 

 

Figure 1-2: The general schema of the proposed IDS 

As can be seen in Figure 1-2, for achieving the main goals of thesis, the proposed model consists of 

two components: (a) an IDS for detecting cyber-attacks raised by the Internet or LANs and (b) 

another IDS for detecting insider-attacks occurred by 6LoWPAN. According to the aforementioned 

components, the proposed IDS includes the following parts: 

1) Feature selection: In this thesis, a novel feature selection method which is based on Binary 

Gravitational Search Algorithm (BGSA) and Mutual Information (MI) is presented for selecting 

the optimal feature set of the instances extracted from the Internet or LANs traffic.  

2) An offline misuse-based IDS: For detecting and identifying intrusions raised by the Internet or 

LANs, a novel approach that is based on the supervised Optimum-path Forest (OPF) is 

introduced. 

                                                      
6 Detection Rate 
7 False Alarm Rate 



5 

 

3) A real-time anomaly-based and specification-based IDS: To detect the anomalous behaviors of 

6LoWPAN and as well as identifying the type of anomalies, this thesis proposes a real-time hybrid 

method based on anomaly-based and specification-based IDSs. Note the presented anomaly-

based IDS is an anomaly detection engine based on the unsupervised OPF that is modified 

regarding the Map-Reduce architecture. Moreover, the proposed specification-based IDS is used 

to ensure whether the detected anomalies are attacks or not. Furthermore, if the detected 

anomalies are attacks, the types of them can be determined by the proposed specification-based 

IDS. 

 

1.4 The Structure of Thesis 
This thesis has been written in five chapters as follows: 

 

Chapter 1: This chapter reviews the general issues of the topic in terms of the problem statement, 

the goal and research scope, as well as the aspects of innovation. 

 

Chapter 2: The basic concepts and the related works are studied in this chapter. Indeed, the 

foundations of some of the technical principles (e.g., explaining the possible external and internal 

attacks that can occur in IoT, reviewing the RPL, introducing the IDSs and machine learning 

methods) employed in the thesis will be introduced. Moreover, at the last of this chapter, the related 

works are reviewed, briefly. 

 

Chapter 3: In this chapter, the presented framework used for detecting and identifying the types of 

possible cyber-attacks and insider-attacks of IoT will be studied in detail. Generally, Chapter 3 

includes two main sections: (1) the proposed offline misuse-based IDS and (2) the proposed real-

time anomaly-based and specification-based IDS that are used for dealing with the cyber-attacks and 

insider-attacks of IoT, respectively. In the first section, a novel feature selection algorithm used in 

the preprocessing step is presented in details. Then, an offline misuse-based IDS which is proposed 

for detecting the possible external threats of IoT is introduced, completely. Next, the second part of 

this chapter presents a real-time hybrid of an anomaly-based and specification-based IDS used for 

detecting the possible internal threats of IoT. 

 

Chapter 4: This chapter focuses on the evaluation of the proposed method. Therefore, at first, the 

standard metrics used to evaluate the proposed IDS are introduced, briefly. Then, the proposed 

feature selection method and misuse-based IDS are evaluated based on the presented metrics. Next, 

three IP-based WSNs that use the RPL as routing protocol are simulated for evaluating the efficiency 

of the proposed method in detecting sinkhole and selective forwarding attacks as two famous insider-

attacks of IoT. 

 

Chapter 5: This chapter reviews and summarizes the thesis. Moreover, the limitations of the research 

and future work will be reviewed, briefly.  
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 Background and Survey 
 

 

 
 

Internet of Things is a novel approach in computer networks that has caused a revolution in 

telecommunications. Every identifiable physical object of IoT can send data to or receive data from 

the Internet or other physical objects. 6LoWPAN as the main effort to make the concept of real IoT 

is an IP-based WSNs that can connect the smart physical objects to the Internet through wireless 

communications. Notice 6LoWPAN uses RPL and IPv6 protocols for routing the packets in a low-

power and lossy network. As mentioned in Chapter 1, security in IoT is one of the main challenges 

that cannot be obtained just by using encryption or access control. Nowadays, the intrusion detection 

systems are one of the main and effective solutions that can be used to overcome the security threats 

in computer networks, especially IoT. 

 

Because this thesis specifically focuses on proposing an IDS, which uses a hybrid of machine learning 

methods for detecting and identifying the possible attacks of IoT, this chapter studies the possible 

external and internal threats of IoT, firstly. Then the intrusion detection systems and machine learning 

are reviewed, completely. Moreover, the application of machine learning algorithms in IDSs is also 

considered. On the other hand, sinkhole and selective forwarding attacks as two dangerous threats 

of IoT, and RPL (routing protocol of 6LoWPAN) are also reviewed, briefly. 

 

2.1 The External Threats of IoT (Cyber-Attacks) 
Generally, the majority of security researchers who work in the area of intrusion detection have used 

the KDD’99 as a benchmark dataset for evaluating their methods. In 1999, the MIT Lincoln 

Laboratory, which was supported by Defense Advanced Research Projects Agency and Air Force 

Research Laboratory, started to provide and deliver the KDD’99 dataset for evaluating the IDSs in 

computer networks (Ibrahim, Basheer, & Mahmod, 2013). Indeed, they simulated a fictitious military 

network including three machines that run various operating systems and services in seven weeks in 

order to obtain this dataset (Lahre, Dhar, Suresh, Kashyap, & Agrawal, 2013). They also used an 

additional three machines and a sniffer for spoofing various IP addresses and storing traffic in TCP 

dump format, respectively (Lahre et al., 2013). It should be realized, the KDD'99 was obtained by 

employing the data mining methods introduced in the KDD8 process over the aforementioned 

simulated traffics. 

 

Generally, the simulated attacks in KDD'99 dataset, which are used in this thesis as cyber-attacks of 

IoT can be classified into the following four categories (Lahre et al., 2013): 

 

1) DoS9 attacks: In these kinds of attacks, attackers try to busy services of a host on the 

Internet in order to prevent its accessibilities. 

2) Prob attacks: In these kinds of attacks, perpetrators attempt to gather different information 

about a target host or a network. Indeed, their preferred information is some useful 

                                                      
8 Knowledge Discovery in Databases 
9 Denial of Service 
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information that can be used to cope with the security mechanisms of a host or a network, 

and consequently, it leads to a host or network vulnerability in front of security threats. 

3) U2R10 attacks: These kinds of attacks include some attacks that can locally access the victim 

machines in order to gain higher account privileges. 

4) R2L attacks: These kinds of attacks try to access the victim machines without having the 

required permissions (user accounts). 

 

2.2 The Internal Threats of IoT (Insider-Attacks) 
As mentioned in Chapter 1, the focus of the majority of insider-attacks in 6LoWPAN is threatening 
the network layer through routing attacks, especially selective forwarding and sinkhole attacks. Since 
the 6LoWPANs use RPL as a standard routing protocol, thus RPL and its functionality will be 
considered before reviewing the mentioned attacks. 

2.2.1 The IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL) 

The RPL, which is based on the construction of a Destination-Oriented Directed Acyclic Graph 

(DODAG), is an IP-based distance vector and hop-by-hop routing protocol that is designed by the 

ROLL workgroup (which is a workgroup in IETF) to overcome the routing problems in the LLNs. 

RPL enables one-to-one, one-to-many, and many-to-many communication traffic by supporting 

different operations such as the unidirectional traffic towards a DODAG root, bidirectional traffic 

between resource-constrained devices (i.e., 6LoWPAN nodes), and bidirectional traffic between 

resource-constrained devices and the DODAG root (Wallgren et al., 2013). According to the 

DODAG architecture, the nodes are organized in a hierarchical tree structure and routed at a single 

root, as the destination and called 6BR, to avoid creating any network loop. The 6BR, which connects 

6LoWPAN to the Internet through the backbone, is the root of DODAG and is responsible for the 

management of nodes. Figure 2-1 shows a typical RPL which consists of different 6LoWPAN nodes 

(i.e., source, router, and root nodes) that are connected together based on the DODAG topology. 

Each node has an ID based on an IPv6 address, a special rank, a set of neighbors, and one (or more) 

parent(s). The rank of each node determines the relative position of that node with respect to the 

DODAG root. This rank is strictly increasing in the top-down direction from the DODAG root 

toward the leaf nodes, and in opposition decreasing in the bottom-up direction toward the DODAG 

root (Wallgren et al., 2013). The nodes in a DODAG use an objective function, represented by an 

Objective Code Point (OCP), based on some optimization criteria (such as link reliability, latency, 

hop-count, and node energy) to optimize the paths toward the DODAG root (Le et al., 2012). A 

single 6LoWPAN network may include multiple RPL instances that work concurrently with different 

optimization criteria, where each instance consists of one (or more) DODAG(s). Hence, a 

6LoWPAN node can belong to more than one DODAG in an RPL instance (Winter et al., 2012). 

To prevent probable loops created on the network, the message transmission is based on the rank 

rule (that means the node ranks are strictly decreasing along with the upstream transmission and vice 

versa) (Wallgren et al., 2013).  
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Figure 2-1: DODAG scheme including nodes with unique ranks and IPv6 addresses 

 

2.2.1.1 Control Messages of RPL 

To exchange routing graph information for RPL operations, such as constructing DODAG, the RPL 

defines three new ICMPv611 message types: a) DAG Information Object (DIO); b) DAG 

Information Solicitation (DIS); and c) Destination Advertisement Object (DAO). DIO messages 

carry information which is used for DODAG construction by allowing a node to determine parents 

and selecting the best one as the preferred parent. The DIS messages are used to solicit graph-related 

information (i.e., DODAG information object) from the neighbor nodes (Wallgren et al., 2013). The 

RPL supports downward traffic toward the leaf nodes by using DAO messages which advertise 

required information and also propagate destination information upwards along the DODAG 

(Winter et al., 2012). 

 

2.2.1.2 DODAG Construction 

In the process of DODAG construction, DIO messages (which contain important information such 

as rank, DAG-ID, and OCP) are periodically broadcasted by the DODAG root (Le et al., 2012). The 

nodes that receive DIO are considered as the neighbors of the DODAG root. They use DIO message 

information to join the DODAG and select the DODAG root as the parent. According to a specific 

objective function (such as min-hop), the neighbors assign their rank to 1 (the parent’s rank that is 0; 

is incremented by 1) and start broadcasting their own DIO. When a node receives a DIO message, 

it calculates its rank from the OCP specified in a received DIO and forms a list of parents. Then, 

according to the OCP, the preferred parent is selected from the parent-list and broadcasts its own 

DIO. This procedure will be continued until the topology construction is completed (i.e., the best 

path to the DODAG root is identified for each node according to the objective function). To handle 

inconsistencies in the DODAG, RPL uses a trickle timer for determining the transmission rate of 

DIO messages. In a network with stable topology, the trickle timer interval is large, so the DIO 

messages will be rare. When the inconsistencies occur, the trickle timer will be reset and more DIO 

messages are sent from the nodes that cause inconsistencies (Wallgren et al., 2013). 
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Figure 2-2: A screenshot of a sinkhole attack launched by node 6 in DODAG as a malicious node 

 

2.2.2 Selective forwarding and Sinkhole Attacks 

Among diverse attacks that can threat RPL, DoS as a devastating kind of attack has undesirable 

effects on 6LoWPAN accessibility. In computer networks, any event that details the services of 

machines (nodes) by disturbing the communications among them, is known as DoS (Kasinathan, 

Pastrone, Spirito, & Vinkovits, 2013). DoS is a popular kind of attacks, which can be created simply. 

But, because they may have various forms, the identification process of them is so hard (Rghioui et 

al., 2014). Selective forwarding and sinkhole attacks are well-knows routing attacks that try to disturb 

the routing process in WSN. In selective forwarding attacks, which primarily disrupt the routing path, 

malicious nodes selectively forward packets in order to remove some packets based on the 

importance of data or randomly (Shahid, 2013). For example, a malicious node forwards only routing 

messages and removes other packets for disrupting the network (Shahid, 2013). In sinkhole attacks, 

a malicious node represents itself to others as an optimal routing path for attracting nearby nodes to 

route traffic through it. As shown in Figure 2-2, in RPL, an intruder launches a sinkhole attack by 

propagating its rank as a better rank to make nodes down in the DODAG by selecting it as a preferred 

parent (Shahid, 2013). The sinkhole attacks may not necessarily threaten the network; however, they 

make serious problems when they couple with other attacks such as selective forwarding attack. 

 

2.3 Intrusion Detection Systems 
IDS is an effective tool or mechanism which gathers network traffic as input data for detecting 

intruders or malicious behaviors that are trying to threaten the network. Actually, IDS monitors the 

network traffic or system functionalities in order to detect the signs of illegal behaviors. To detect 

malicious behaviors, IDS filters the obtained data for determining the attack patterns. Generally, the 

main approach in IDSs is gathering and analyzing the data related to the network traffic or systems 

behaviors to identify threats and produce warnings (Le et al., 2012). As mentioned in Chapter 1, there 

are various metrics used for evaluating the intrusion detection systems; however, DR and FAR are 

two popular metrics, which are broadly used in evaluating and comparing different methods of 
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intrusion detection. DR is the ratio between the number of correctly detected attacks and the total 

number of attacks that occurred in a network. While FAR is the ratio between the number of 

incorrectly detected attacks and the total number of normal connections in the obtained data. These 

metrics will be introduced in Chapter 4, accurately. 

 

Today, the security scientists in computer networks classify IDSs into different categories based on 

the analysis methods, data sources, and system architectures. 

2.3.1 IDS Classification Based on the Analysis Methods 

Depending on the analysis methods, the computer security community has classified IDSs into three 

main categories: (a) misuse detection; (b) anomaly detection; and (c) specification-based systems. In 

the misuse detection systems, the predefined attack patterns are profiled in a signature database as a 

reference of intrusion patterns to match against system behavior or network traffic for detecting 

intrusions (S.-Y. Wu & Yen, 2009). The misuse detection techniques are simple to use; however, 

specific knowledge of each attack is required and consequently, unknown abnormalities are not 

detectable. On the other hand, all of the known attacks can be detected with low False Alarm Rate 

(FAR), and the storage costs grow with the number of attacks because a signature of each known 

attack should be stored (Kasinathan et al., 2013). Generally, misuse detection is not a suitable method 

for detecting intrusions in WSNs or 6LoWPANs. Because the system needs to have enough 

knowledge about all kinds of possible attacks in order to define the attack patterns. In addition, 

increasing the number of attacks leads to grow the size of storage, while the storage size of WSNs 

and 6LoWPANs are limited. Moreover, 6LowPANs need the ability to detect new attacks, while the 

misuse detection methods skip it (Le et al., 2012). 

 

An anomaly detection system focuses on normal system behaviors or network traffic. In other words, 

in this method, the system concentrates on classifying the normal behavior of a network or host 

system. Actually, to anomaly detection, the obtained data should be analyzed for determining the 

patterns of anomalies. The anomaly detection systems build usually one the following models as a 

baseline for describing ordinary behavior: (a) statistical; (b) knowledge-based; and (c) machine-

learning (Golmah, 2014). In the observed data, any deviation from this model can be considered as 

an anomaly. Generally, there are two main stages in anomaly detection: (1) the construction stage in 

which a profile of the normal traffic or system behaviors will be built by employing the statistical, 

knowledge-based, or machine-learning algorithms; (2) the detection stage in which the current traffic 

or system behaviors are compared with the predefined profile (Stakhanova, Basu, & Wong, 2010). 

The anomaly detection algorithms are useful for new intrusions; however, they suffer from a high 

rate of false positive (unlike, the misuse detection models).  

 

The specification-based systems work in the same way, as well. However, user guidance is required 

to extract legitimate system behavior or network traffic for developing a model of normal behavior 

in these systems in addition to employing statistical, knowledge-based, or machine learning 

techniques (Sekar et al., 2002). Note applying this method can be more accurate than the anomaly 

detection method; however, it is prone to error because of relying on user expertise (Sekar et al., 

2002). 
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2.3.2 IDS Classification Based on the Data Sources 

According to the data sources, IDSs take one of the following approaches for recognizing attacks: 

(a) host-based; (b) network-based; and (c) hybrid (Zhang, Feng, & Qin, 2013). In the host-based 

approach, only the host events are considered for detecting attacks. Therefore, the data for host-

based IDS is provided by different activities of hosts such as audit records of an operating system 

and system logs; however, in the network-based IDS, data is mainly collected from the network 

segments such as Internet packets (S.-Y. Wu & Yen, 2009). In the hybrid approach, data provided by 

the host events and the network segments are considered in developing an IDS. 

 

2.3.3 IDS Classification Based on the System Architecture 

The system architecture of IDS has a great effect on the performance of IDS in the WSNs such as 

6LoWPAN. According to the system architecture, IDSs in the RPL-based WSNs are classified into 

four main categories (Zhang et al., 2013): (a) stand-alone; (b) distributed and cooperative; (c) 

distributed and hierarchical; and (d) mobile agent. Some nodes which have Low-power and Lossy 

Networks (LLNs) devices or high-performance devices called Monitor Nodes (MNs) are used for 

monitoring the events in WSNs (Zhang et al., 2013). In the stand-alone architecture, each MN 

performs intrusion detection based on its own collected data, independently. The MNs in the stand-

alone IDS are classified into two schemes: (1) centralized and (2) distributed. In the centralized 

scheme, each node is considered as an MN, and in the distributed scheme, multiple MNs are deployed 

on a WSN to cover the network (Zhang et al., 2013). In the distributed and cooperative architecture, 

intrusion detection is accomplished by the cooperation of MNs such that each MN performs as an 

IDS agent and participates in intrusion detection (Zhang et al., 2013). In this approach, IDS is applied 

as a local-agent or a neighbor-agent to a two-level coordinate architecture, where a local-agent can 

alert intrusion independently by detecting a threat with sufficient evidence. However, when a local-

agent detects intrusion with weak evidence, it starts a cooperative detection procedure in an 

interaction with the neighbor-agents for global detection (Zhang et al., 2013). This kind of 

architecture is suitable for small-scale and flat network infrastructures; however, in a large-scale 

network, the distributed and hierarchical architecture is adequate for detecting an intrusion (Zhang 

et al., 2013). According to this approach, the network is partitioned into some clusters with a sink 

node as a Cluster Head (CH). The IDS in a distributed and hierarchical architecture is composed of 

two levels. At the first level, CH-agents, which are responsible to monitor the covered nodes and 

make the global intrusion detection decisions, are embedded in the sink nodes. At the second level, 

the local-agents, which are designed based on the stand-alone IDS, are deployed in each cluster to 

report the detection results to the CH-agents (Zhang et al., 2013). The last-mentioned IDS 

architecture in WSNs was the mobile agent. The mobile agent, as a self-controlling program segment, 

is a specific executable code that traverses from a node to another one (Hamedheidari & Rafeh, 

2013). In this agent migration, which means moving an agent from a node to another selected node, 

the computation is performed in addition to data transmission (Hamedheidari & Rafeh, 2013). The 

mobile agents are assigned to the selected nodes for performing a monitoring task and intrusion 

detection (Zhang et al., 2013). The selection of agents may be changed after a certain period of time 

or after the task is completed. By moving the processing function to the data instead of bringing the 

data to a central processor, the mobile agents can greatly reduce the communication cost in the links 

with low bandwidths. 
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2.4 Machine Learning and its Applications in IDS 
With the fast growth of computer networks causing attacks to become more sophisticated, detecting 

intrusions based on the usual method is impossible. Machine learning (MI) as the most effective soft 

computing approach is widely used in intrusion detection systems due to its proper results. Actually, 

different studies show that using machine learning algorithms in the area of intrusion detection can 

conclude high DR and low FAR while reducing computation and communication overheads (Zamani 

& Movahedi, 2013).  

 

Roughly speaking, machine learning studies on some algorithms that are able to construct a learning 

model on the given input datasets to provide the ability of prediction. The input dataset consists of 

training and testing datasets used to train the learning model and evaluate the trained model, 

respectively. There are three major types of learning algorithm named supervised, unsupervised and 

semi-supervised learning. In mathematical terms, the supervised learning attempts to find a proper 

function by employing the labeled data samples. Actually, this decision function can map the 

unlabeled data samples to the corresponding class. However, because of the lack of labeled data 

samples, the unsupervised learning partitions data samples into different clusters based on their 

similarities. It is noted that supervised and unsupervised learning algorithms are usually used in 

misuse-based and anomaly-based intrusion detection systems. Semi-supervised learning is a hybrid 

method in machine learning that usually uses small labeled data samples with a great volume of the 

unlabeled data samples for learning. 

 

The most prominent approaches of ML-based intrusion detection systems can be divided into 

artificial intelligence (AI) and computational intelligence (CI) (Zamani & Movahedi, 2013). AI-based 

techniques support symbolic knowledge representation, which points out a classic realm of AI such 

as statistical models, while CI-based techniques can handle the numeric representation of information 

(Zamani & Movahedi, 2013). Actually, these kinds of methods refer to nature-based techniques such 

as evolutionary computation, fuzzy logic, artificial neural networks, and artificial immune systems. 

Both of AI- and CI-based approaches can offer suitable intrusion detection models. However, CI-

based techniques fit the requirement of efficient IDSs due to their proper characteristics such as high 

computational speed, fault tolerance, adaptation, and resilience in front of noisy information (S. X. 

Wu & Banzhaf, 2010). 

 

In ML-based intrusion detection systems, at first, a training dataset includes labeled or unlabeled data 

samples will be created through the collected data relating to the system behaviors or network traffic. 

Then the target learning algorithm trains the learning model (training phase). After the training phase, 

the obtained model can classify or cluster new data samples. Note in classification approaches, some 

classes which are known as attacks are clear while in clustering approaches some clusters that include 

fewer samples are assumed as an anomaly since the number of attack samples is usually fewer than 

the normal samples. Indeed, the anomaly detection engine will label a sample as anomalous if it 

belongs to the pointed small clusters.     

 

2.5 Related Work 
Since the 1970s to the present, there has been a lot of research on intrusion detection systems. In 

1980, James Anderson (Anderson, 1980) introduced the concept of intrusion detection for the first 

time. In his paper, he presented some methods for the security surveillance of computer systems. 

From 1984 to 1986 the studies of Denning and Neumann (Denning & Neumann, 1985) in the 
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security area of computer systems concluded an IDS based on expert systems called IDES12, which 

could detect intrusion in real-time. In this project, the misuse-based and anomaly-based approaches 

were used in a hybrid way. 

 

Generally, the studies on intrusion detection systems can be reviewed from different aspects such as 

the methods used in IDSs, the benchmark datasets used in IDSs, and the type of networks. The 

traditional IDSs (e.g., SNORT and Bro) were based on misuse detection methods, although these 

kinds of techniques cannot identify new attacks. Over the last two decades, anomaly detection 

methods were the main approach of the security communities due to the great capabilities of these 

kinds of methods in detecting diverse threats. For example, Anuar et al. (Anuar, Sallehudin, Gani, & 

Zakaria, 2008) presented a hybrid statistical strategy based on the data mining and decision tree 

classification in order to analyze the normal and attack traffic, statistically. As another example, Mabu 

et al. (Mabu, Chen, Lu, Shimada, & Hirasawa, 2011) proposed a fuzzy class-association-rule mining 

method for detecting the intrusions. Their method, which was based on genetic network 

programming, employed directed graph structures instead of a string genetic algorithm in order to 

extract many important class-association rules. 

 

As mentioned earlier, from the aspect of analysis methods, machine learning algorithms are the most 

efficient techniques that are broadly engaged in various kinds of IDSs. Kim et al. (Kim, Lee, & Kim, 

2014) proposed a hybrid intrusion detection method that integrated hierarchically a misuse detection 

model based on the C4.5 decision tree algorithm and an anomaly detection model based on multiple 

one-class Support Vector Machines (SVMs). The experimental results showed improvement in the 

IDS performance in terms of unknown-attacks detection and speed of detection. Wang et al. (G. 

Wang, Hao, Ma, & Huang, 2010) proposed an approach based on artificial neural networks (ANNs) 

and fuzzy clustering, called FC-ANN, for achieving high DR and low false positive rate. The fuzzy 

clustering technique was used for generating different training subsets. These subsets were employed 

for training the ANNs. The result of simulation experiments on the KDD'99 dataset showed superior 

performance as compared to the back-propagation neural network (BPNN) and other well-known 

methods such as decision tree and naïve Bayes. Sheikhan and Khalili (Sheikhan & Khalili, 2010) 

proposed a rule extraction module based on a dynamic cell structure (DCS) neural network and a 

modified version of the LERX algorithm. Their experimental results have shown the superiority of 

the presented method as compared to the multi-layer perceptron (MLP) in identifying the hard-

detectable attacks. 

 

As discussed previously, the majority of researchers in the security communities who work in the area 

of intrusion detection used the KDD’99 as a benchmark dataset for evaluating their methods. 

Because the KDD’99 dataset has some problems like having redundant and duplicate records that 

will cause negative effects on the evaluation result when being used as an evaluation dataset, Tavallaee 

et al. (Tavallaee, Bagheri, Lu, & Ghorbani, 2009) introduced a new dataset named NSL-KDD dataset 

that is a revised version of KDD’99 consisting of selected records of the complete original KDD’99 

dataset. It is noted that some researchers such as Raza et al. (Raza, Wallgren, & Voigt, 2013) used the 

simulated traffic rather than employing the offline benchmark datasets for evaluating their proposed 

IDSs. 
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There are diverse studies on intrusion detection that focus on the type of networks. For instance, 

Zhijie and Ruchuang (Zhijie & Ruchuang, 2012) presented a new anomaly detection method based 

on a Markov model in order to predict the traffic of large-scale wireless networks. Indeed, they 

proposed their technique for detecting some kind of attacks such as selective forwarding attacks 

which make more influence on packet traffic. The experimental results of their method had higher 

DR, lower FAR, and lower computation and communication overheads in comparison with other 

techniques. 

 

During the last years, there are few studies that focus on presenting a dedicate IDS for the Internet 

of Things. For example, Liu et al. (C. Liu, Yang, Chen, Zhang, & Zeng, 2011) proposed an IDS based 

on the Artificial Immune System (AIS) in order to identify intrusions in IoT. In this method, they 

defined IDS and IoT environment in their AIS, firstly. Then the self-adapting and self-learning 

mechanisms were simulated. They succeeded to show the proper performance of the proposed 

method in detecting intrusions of IoT. Amin et al. (Amin, jig Yoon, Siddiqui, & Hong, 2009) 

proposed an IDS for IP based Ubiquitous Sensor Network (IP-USN). Similar to 6LoWPAN, IP-

USN is another effort to make the concept of real IoT. In their research, they studied three possible 

attacks (i.e., attacks from the Internet hosts, within sensor networks, and on the Internet clients) 

which may happen in IP-USN. In their method, the proposed IDS has resided on the IP-USN 

gateway. Their presented method included two main components called Internet Packet Analyzer 

(IPA) and USN Packet Analyzer (UNA). Moreover, IPA consisted of two modules for anomaly 

detection and pattern classification. The anomaly detection module was in charge of identifying 

anomalous traffic. The UNA component employed a slave node (surveillance nodes) to generate and 

send warning messages toward the master node. The master node was responsible for making 

decisions and enforcing policy within its domain. So the kind of node could detect intrusions in the 

network. Indeed, they took a bottom-up approach that began from reviewing the traditional attacks 

of WSNs and continued toward the possible attack scenario in IP-USN for designing a dedicated 

IDS. Kasinathan et al. (Kasinathan et al., 2013) introduced a Denial of Service (DoS) attacks detection 

architecture for 6LoWPAN. The proposed IDS was immune against DoS attacks. In addition, it was 

applicable and scalable in the real IoT applications. They integrated an IDS into a framework that 

was developed in the European Business-Based Internet of Things and Services project named 

Ebbits. The proposed method used an IDS probe to listen to the 6LoWPAN network traffic. Their 

simulation results showed the capability of the proposed architecture in detecting DoS attacks. 

Moreover, because the proposed IDS was hosted on a powerful Linux host in the Ebbits network, it 

could overcome the concerns of resource constraints in traditional low-power devices. Le et al. (Le, 

Loo, Luo, & Lasebae, 2011) worked on security aspects of RPL by introducing a specification-based 

IDS for detecting a new type of threat called topology attack. This type of attack, which was originally 

applied to RPL, changes the node operation for breaking the optimized network topology. The 

experimental results showed effective detection of RPL topology attacks with reasonable overhead. 

 

Perhaps the most important research that has already been done in designing an appropriative 

intrusion detection system for IoT is the SVELTE project. Indeed, in this project, Raza et al. (Raza 

et al., 2013) proposed a novel real-time IDS for IoT called SVELTE. They implemented the proposed 

model in the Contiki operating system and targeted only routing attacks such as sinkhole and selective 

forwarding. Their proposed system consisted of three main centralized modules which were located 

in 6BR. The first module called 6Mapper was responsible to gather network data and construct a 

DODAG of the network in 6BR. The second module analyzed mapped data in order to detect 

intrusions. This module could identify attacks through (1) detecting inconsistency in obtained 
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DODAG, (2) checking the availability of the network nodes, and (3) validating the routing graph. 

The third module was a distributed mini-firewall which was designed to filter malicious traffic before 

it reaches the resource-constrained devices. They showed through simulated scenarios that SVELTE 

has a small overhead to deploy on the constrained nodes and can detect most of the malicious nodes 

that launch sinkhole and/or selective forwarding attacks.  
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Since there is not a considerable study in the IoT security that uses the machine learning approaches 

to detect intrusions, the main purpose of the proposed model is to use the machine learning 

algorithms in order to present an ML-based intrusion detection technique for identifying security 

anomalies in the Internet of Things. This chapter introduces the proposed model by describing the 

different applied approaches. As mentioned in Chapter 1, the proposed model considers both cyber-

attacks and insider-attacks, which may be launched by the Internet and 6LoWPAN, respectively. 

Therefore, as shown in Figure 1-2, the proposed model consists of two main components to confront 

with the Internet and 6LoWPAN threats.   

 

3.1 Cyber-Attack Identification 
Generally, resource-constrained nodes of 6LoWPANs can be attacked by diverse cyber-attacks on 

the Internet (or LANs) because the 6LoWPAN can connect to the Internet (or LANs) through 6BR. 

In the proposed model, the detection of cyber-attacks will be done offline by employing a novel 

misuse-based intrusion detection engine. As shown in Figure 1-2, the proposed component 

comprises of two following sequential phases:  

 

3.1.1 Preprocessing 

Intrusion detection systems usually face with the high-dimensional large-scale data including 
irrelevant or redundant features. These kinds of features lead to reduce the speed of the detection 
process and increase resource consumption. For example, in ML-based intrusion detection 
techniques, every feature of the training data may not be relevant to the detection task, and in the 
worst case, irrelevant features may introduce noise and redundancy into the design of classifiers. So, 
choosing a good subset of features will be critical to improving the performance of classifiers (Pei, 
Goodman, & Punch, 1998). In other words, to reduce the computational complexity and increase 
the accuracy of these methods, feature selection is needed in a preprocessing stage, because the 
number of features which is used in an IDS is usually large and feature selection algorithms can 
identify the most relevant ones. Thus, feature selection methods are used to determine the best 
minimal set of features that does not contain redundant features. Feature selection is useful to avoid 
the over-fitting problem, improving the performance of classification models, reducing the training 
and testing time, improving stability against noise, and reducing the measurement and storage 
requirements (Kumar & Kumar, 2012). Because the proposed method uses a high-dimensional NSL-
KDD dataset as the simulated traffic of the Internet side, this thesis provides a novel hybrid method 
based on Binary Gravitational Search Algorithm (BGSA) and Mutual Information (MI) to reduce the 
dataset’s dimension. Before introducing the proposed method, some of the fundamental concepts 
used in the proposed technique will be reviewed. 
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3.1.1.1 Feature Selection Problem  

Suppose that    ,  ,  T D F C  is a dataset with n instances, m dimensions and k labels or target classes 

where    1 2 1 2  ,  ,   ,    ,  ,  ,  n mD o o o F f f f     and  1 2  ,  ,  ,  kC c c c  are the sets of instances, 

features, and labels, respectively. The goal of machine learning is to provide a model :    h F C  that 

maps the input feature space F onto the class space C, and it would be better if the model h contained 

those input features that contribute much more information to the distribution of the classes (H. Liu, 

Wu, & Zhang, 2014). Feature subset selection problem refers to finding an optimal feature subset 

like F′ with d member of the whole feature space where F F   and   d m , and it can lead to the 

best possible accuracy in the classification or more clearly in optimizing a criterion function. The 

number of suitable features is not predictable, so all feature subsets should be evaluated to find an 

optimal feature subset. Let the number of features in the dataset be n, so the number of the feature 

subsets will be 2 1n  . When n is large, it is impossible to evaluate all feature subsets, therefore finding 

an optimum feature subset is usually NP-hard (Deisy, Baskar, Ramraj, Koori, & Jeevanandam, 2010). 

 

3.1.1.2 Feature Selection Techniques  

The feature selection method has two main steps: (a) the generation procedure that finds an optimal 

feature subset, (b) an evaluation procedure to measure the optimality of the generating subset of 

features by using an evaluation criterion (Deisy et al., 2010). Depending on feature subset evaluation, 

the feature selection methods can be classified into the filter, wrapper, and embedded methods 

(Kumar & Kumar, 2012). The filter methods use general characteristics of the training data to evaluate 

features and operate independent of learning algorithms, so these methods are appropriate for 

processing high-dimensional data (Hoque, Bhattacharyya, & Kalita, 2014). Wrapper methods use 

learning algorithms to evaluate the feature subset selection, and this means that they use classification 

feedbacks for feature selection. These methods have improved the accuracy of classification with a 

high computational-complexity (Hoque et al., 2014). Therefore, they are intractable for large-scale 

problems. In the embedded approach, feature selection is a part of the training phase in machine 

learning, so the feature selection is specific to the applied learning algorithms (Hoque et al., 2014). 

Another approach to feature selection is based on hybrid methods. This approach is a combination 

of filter and wrapper-based methods. The filter method selects the candidate features which are 

refined by the wrapper part (Hoque et al., 2014). 

 

3.1.1.3 Binary Gravitational Search Algorithm  

Finding an optimum feature subset depends on the search strategy. The search strategy is classified 

into exhaustive, heuristic and random searches and is combined with several types of measures to 

form different algorithms (Ruiz, Riquelme, & Aguilar-Ruiz, 2005). The time complexity is exponential 

in terms of data dimensionality for exhaustive search and quadratic for heuristic search. Hence, 

heuristic search algorithms have been widely used for feature selection. BGSA is an efficient 

population-based heuristic search that can be used in various optimization problems. According to 

the Newtonian gravitational law, each particle attracts other particles with a "gravitational force" 

which causes a movement of all objects globally toward the objects with heavier masses. This force 

is directly proportional to masses of particles and inversely proportional to the square of the distance 

between them (Rashedi, Nezamabadi-Pour, & Saryazdi, 2009): 
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where M1 and M2 are the masses of particles, and R is the distance between them. Based on Eq. (3-

1), the gravitational force between large particles which are closer will be large. G is the gravitational 

constant and its actual value depends on the age of the universe (Rashedi et al., 2009): 
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where 
maxt  is the total number of iterations. G0 is the value of the gravitational constant at the 

beginning. Computer science uses the Newtonian gravitational law in optimization problems such as 

some random candidate solutions called agents that are created for an optimization problem as an 

initial population. Then, each agent moves other agents based on Newtonian gravitational law. So 

the problem space is searched to find the best possible solution. According to GSA, at the beginning 

of the algorithm, a population of n agents is created. The position of each agent (particle), which is a 

solution, is defined as follows: 
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i i i iX x x x i n                                          (3-3) 

 

where d

ix  is the position of the 𝑖th mass in the d-th dimension and m is the number of dimensions. 

Then by computing and using the fitness value of each particle, their masses are calculated as follows 

(for a maximization problem): 
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where   ifit t  presents the fitness value of the i-th agent in the t-th iteration (specific time).  best t   

and  worst t show the best and worst values in t-th iteration and are defined as follows: 

 

 
 

   
 

 
1,  ,  1,   ,  

max   ,     minj j
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In the next step, the force acting from the j-th agent to the i-th agent in the t-th iteration is calculated 

as follows: 

 

   
   
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             (3-6) 

 

where 
iM  and 

jM  are the mass of agents i and j, respectively and ε is a small constant. 
ijR  is the 

hamming distance between two agents i and j. The total force acting from other agents to the i-th 

agent in dimension d is calculated by summing the randomly weighted forces that are extracted from 

the d-th dimension of other agents: 
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d d
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where 𝛾𝑗 is a random value between 0 and 1. Note that only k best agents which have the highest 

fitness value are considered to attract the others (Sheikhan, 2014) because this limitation will improve 

the performance of GSA by controlling exploration and exploitation to avoid trapping in the local 

optimum solution. In the beginning, a set of k best comprises of all the agents and decreases linearly 

to one, over time. In the next step the acceleration of the i-th agent in the dimension d is computed 

based on the law of motion as follows: 

 

 
 

 

d

id

i

i

F t
a t

M t
                 (3-8) 

 

 

 
 

Figure 3-1: Flowchart of BGSA 

Then the velocity of an agent in the dimension d at the t-th iteration is computed by current velocity 

and its acceleration as follows: 

 

     1d d d

i i i iv t v t a t                              (3-9) 

 

where 𝛼𝑖 is a random value between 0 and 1. In the BGSA, the position of an agent in each dimension 

can take only 1 or 0 value (means that does the equivalent subset include the corresponding feature 

or not?) The position updating of agents are calculated according to the mass velocity probability as 

follows: 
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To reach a good convergence rate, Rashedi et al. (Rashedi, Nezamabadi-Pour, & Saryazdi, 2010) 

limited the velocity by   6d

i maxv t v   . The above steps will continue until the allowed iteration 

number is reached or an acceptable solution is found. The flowchart of BGSA is shown in Figure 3-

1. 

 

3.1.1.4 Mutual Information  

Generally, features can be classified into three categories: relevant, redundant, and noisy features 

(Bonev, 2010). Relevant features are the features that have information about the target classes. It 

means that they can classify instances by themselves or in a subset with other features. As shown in 

Figure 3-2, they include two different types: strong relevance and weak relevance. A feature fi is 

strongly relevant if its removal degrades the performance of the classifier. It is weakly relevant if it is 

not strongly relevant and if F is a subset of features, the performance of the classifier on  iF f  

will be better when just F is used (Bonev, 2010).  

 
Because the redundant features can provide the same information about the target classes like selected 

features, therefore they can be removed from features space. Some features do not include 

information about the target classes and also they are not redundant, which are called noisy features 

and they should be removed, because they have a negative effect on classification accuracy. 

 

 
 

Figure 3-2: The illustration of feature types as a feature space 

In most intrusion detection datasets, some of the features are practically either redundant or irrelevant 

(noisy) to the classification problem and they cause a low DR. Generally, the feature selection 

methods find the optimal features by measuring the relation amount of features to the target feature. 

A variety of evaluation criteria have been introduced for filter-based methods which can be classified 

into five groups (Kumar & Kumar, 2012): distance, information (or uncertainty), dependency, 

consistency, and classifier error rate. The information metric is a non-linear correlation metric and is 

a good measurement to quantify the uncertainty of the feature (Deisy et al., 2010). One of the popular 

and effective methods for improving feature selection is based on using mutual information. MI is 

an information theory metric that is used to measure the relevance of features and it shows how 

much information is shared between features. Suppose X and Y are two discrete random variables 

that take on values from sets of A and B, respectively. The mutual information of these two variables 

is defined as: 
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Figure 3-3: The proposed hybrid framework for feature selection 

 

where  p x  and  p y  are the marginal probability distribution functions for X and Y and  ,p x y  

is the joint probability distribution function of X and Y. If X and Y are closely related to each other, 

the mutual information between them will be very high and vice versa. The main idea for using MI 

in feature selection is that the features should be highly correlated with the target class, without having 

any correlation with each other (Kumar & Kumar, 2012). According to this idea, Batti (Battiti, 1994) 

proposed a method called information-based feature selection (MIFS) where its evaluation function 

was defined as follows: 
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s
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f S
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               (3-12) 

 

where   if  is the feature which we want it to be selected, C is the target class, and S is the candidate 

selected feature set.   is a parameter that is determined empirically and varies between 0 and 1 

(Kumar & Kumar, 2012). The aim of this method is to maximize the relevance between input features 

and target class and to minimize the redundancy between selected features (Amiri, Yousefi, Lucas, 

Shakery, & Yazdani, 2011). In Eq. (3-12), the first term gives the feature relevance between the new 

input feature and output feature, and the second term is like a penalty for the first term and measures 

the correlation between the new feature and selected features. When the number of selected inputs 

increases, the effect of the first term would decrease. In order to avoid that, Amiri et al. proposed a 

modified MIFS (MMIFS) by modifying the MIFS evaluation function as follows (Amiri et al., 2011): 

 

( ) ( ; ) ( ; )
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i i i Sf S
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S
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

                               (3-13) 

 

where S is the number of selected features. Determining an appropriate value assignment for   is 

a critical task because it has a great effect on the appropriate feature selection in the MIFS 
algorithm. 

 

3.1.1.4 The Proposed Feature Selection Method  

In this section, the proposed hybrid filter-wrapper feature selection method is introduced. This 

method is based on BGSA as a population-based heuristic search. The proposed method uses mutual 

information to compute the feature-feature and feature-class mutual information for reaching a 

maximum relevance between selected features and the target class and a minimum redundancy 

between selected features. This hybrid of a wrapper and filter types of feature subset selection 

algorithm was used for improving the performance of the intrusion detection system. Figure 3-3 

depicts the proposed hybrid framework. 

According to Figure 3-3, the feature selection process was performed in the following steps: 

 

Step 1 (Initialization): Some of the feature subsets were generated randomly as the initial population 

of agents (n). Each agent was comprised of a binary string with a length of m (the number of features 

in the dataset), where the value of each bit showed the presence of a corresponding feature in an 

agent.  

 

Step 2 (Evaluation): Each agent was evaluated by the fitness function in this step. It means that for 

each agent (feature subset), the SVM model (as a binary classifier) was formed by training instances 

in the dataset that included just features in the corresponding feature subset, and it was evaluated by 

testing instances. In this step, the best position of the agent (best feature subset) between the current 

position of agents and the best position up to the previous iterations was identified based on a fitness 

function. The fitness function was a two-objective function based on maximizing DR and minimizing 

FPR. DR is the ratio between the number of correctly detected attacks and the total number of 

attacks. FPR is the ratio between the number of incorrectly detected attacks and the total number of 

normal connections in the testing set. It was assumed that the DR and the FPR had the same 

importance; therefore, a fitness function was introduced based on minimizing the Euclidean distance 

between each agent point with coordinates of  ,  i iFPR DR  and the perfect classification point with 
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coordinates of  0%,100%  in a receiver operating characteristic (ROC) curve. Figure 3-4 shows a 

simple example of the Euclidean distance between an agent point and the perfect classification point 

in the ROC curve. FPRi and DRi are the false positive rate and the detection rate of the i-th agent. 

The proposed fitness function is defined as follows: 

 

 2 2

1 1 2 2min { ( , ) ( ) ( ) |1i i iFitness d a p p a p a i n              (3-14) 

 

where ai and p are the i-th agent point and the perfect classification point, respectively, and n is the 

number of agents. 

 

 
Figure 3-4: A simple ROC curve with one agent 

 
Step 3 (Updating): The position of agents was updated based on Newtonian gravitational laws. To 

do so, G, the best and the worst values of the population were updated in the beginning using Eqs. 

(3-2) and (3-5), respectively. Then, the mass (M) and the acceleration (a) of agents were calculated 

using Eqs. (3-4) and (3-8), respectively. After that, the velocity and the position were updated using 

Eqs. (3-9) and (3-10), respectively. Then, if the maximum number of iterations was reached (the 

termination condition), the best position of the agent was returned as an optimal feature subset. 

 

Because the position of each agent was updated only based on Eq. (3-10), this means that the 

select/deselect decision about a special feature is independent of other feature selection decisions, 

which can lead to an increase in the redundancy or statistical dependencies among the selected 

features. So, mutual information was used in the position updating phase in order to find an optimum 

feature subset for improving the performance of the feature selection method. To use the mutual 

information in the third step, as can be seen in Figure. 3-3, the proposed method was included two 

search strategies of optimization: (a) the global search, as the outer optimization layer, deals with the 

problem of choosing the optimal feature subset based on the BGSA in a wrapper manner, (b) the 

local search, as the inner optimization layer, prunes the feature subset generated by the wrapper 

model. Feature subset pruning was based on the MMIFS method. The following pseudo-code 

describes the proposed algorithm: 
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Algorithm 1. MI-BGSA feature selection method 

Input:  

 SM is the search mode with permissible values of 1 and 0, where 1 means that the algorithm will 
search for the best pre-specified features and 0 means that the algorithm will search for an optimum 
set of features out of all available features. 

 k is the pre-determined feature set size. 
Output: Selected features F′. 
Initialization: 

 Initialize n (number of agents), m (number of features), and tmax (maximum number of iterations). 

 Set parameters G0, vmax, and β. 

 Initialize  0t   and the position of the agents ( )iX t for 1,2,..,i n randomly with a binary value. 

 Set 
MI by a pre-defined threshold computed by the proposed fitness function. 

 Initialize the fitness of the agents
1( ) [0]nFitness t  . 

 Initialize the velocity of the agents 
1( ) [0]i mV t  for 1,2,..,i n .  

 Set 0Fbest  as the best fitness and 
1[0] mLbest  as the best position. 

Steps: 
(1) while 

maxt t   

(2) Calculate ( )Fitness t via evaluating the position of agents by using the proposed MI-BGSA 

fitness function. 

(3) Calculate
 

( ) max( ( ))best t Fitness t , ( ) min( ( ))worst t Fitness t , and 0

max

( ) (1 ).
t

G t G
t

   

(4) if    Fbest best t   

(5) Set ( )Fbest best t and arg max{ ( )}

( _ )

( ).Fitness t

row index

Lbest X t  

(6) end 

(7) Calculate ( )iq t and ( )iM t for 1,2,..,i n using Eq. (3-4). 

(8) Calculate ( )d

ijF t for , 1,2,..,i j n and 1,2,..,d m using Eq. (3-6). 

(9) Calculate ( )d

iF t for 1,2,..,i n and 1,2,..,d m using Eq. (3-7). 

(10) Calculate ( )d

ia t for 1,2,..,i n and 1,2,..,d m using Eq. (3-8). 

(11) Calculate ( 1)d

iv t  for 1,2,..,i n and 1,2,..,d m using Eq. (3-9). 

(12) for each agent 1,2,..,i n  

(13) Update ( 1)d

ix t  using Eq. (3-10) for 1,2,..,i n and 1,2,.., .d m  

(14) end for 

(15) for each agent 1,2,..,i n  

(16) Initialization: Set {}F  as the initial set of input features which to be filled by the selected 

features that found in the outer layer, {}S  as the selected feature, and y = ‘class-output’. 

(17) for each feature 
df from the original feature set ( 1,2,..,d m ) 

(18) if ( 1) 1d

ix t    

(19) { },dF F f   

(20) end 
(21) end for 
(22) for each feature 

df F  

(23) compute ( ; )dI f y  

(24) end for 
(25) Selection of the first feature: Find the feature 

df which maximizes ( ; ),dI f y set 

{ },dF F f   and 

{ }.dS f  

(26) Set count = 1 where SM is 1 

(27) while   F Ø  where SM is 0 or   count k where SM is 1 

(28) for each pair of features ( , ),d sf f where ( ),( )d sf F f S   
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(29) compute ( ; )d sI f f  

(30) end for 
(31) for each feature 

df F  

(32) compute  ( ) ( ; ) ( ; )
S

d d d Sf S
J f I f y I f f

S




    

(33) end for 

(34) Choose the feature 
df as the one that maximizes  ( )dJ f and set  max ( )dMax J f  

(35) if 
MIMax  where SM is 0 or   count k where SM is 1 

(36) Set { },dF F f  { }dS S f   

(37) Set       1count count   where SM is 1 

(38) else 

(39) Set { }dF F f  and ( 1) 0df

ix t   (the candidate feature 
df is skipped in the i-th 

agent) 
(40) end if 
(41) end while 
(42) end for 
(43) end while 

(44) Set F   {if 1dLbest   then return | 1,2,.., }d d m  as the final features subset 

(45) return F   

 
Lines 2-14 in Algorithm 1 show the global search that leads to selecting an optimal feature subset. 

Then, as shown in lines 15-42, the proposed method works as the MMIFS method for pruning the 

optimal feature subset which can lead to select the best features from the optimal feature set. The 

MMIFS is a greedy forward feature selection algorithm, in which each single input feature is added 

to the selected feature set based on feature-feature and feature-class mutual information. The 

objective of this method is to maximize the relevance between the selected features and the target 

class and to minimize the redundancy among the selected features. As shown in Algorithm 1, the 

MMIFS procedure (lines 15-42) selects one feature at each time. This selection is based on 

maximizing the MMIFS evaluation function. It means that a feature (e.g., 
df ) will be selected in each 

time which can lead to maximizing the information with the target class and minimizing the 

information with the selected features. As seen in Algorithm 1, the proposed method works in two 

search modes: (a) selection of the optimal feature set size, (b) selection of the pre-determined feature 

set size. When the proposed method works in the second search mode, the MMIFS procedure can 

be performed until the pre-determined feature set size is selected. In the first search mode, a threshold 

(i.e., 
MI ) should be defined. In this mode, we assume that when the evaluation of candidate feature 

df (that is a feature which can lead to maximization of MMIFS evaluation function) is greater than or 

equal to the threshold; then, 
df will be selected. In this paper, we used the genetic algorithm (GA) 

with the aim of finding an appropriate threshold. GA is an adaptive heuristic search algorithm based 

on the evolutionary ideas of natural selection and genetics which uses random search to solve 

optimization problems. Each population in the proposed GA represents a possible solution to find 

an appropriate threshold. In GA, each population is evaluated by a fitness function. The fitness 

function used in GA was based on the MMIFS method. The following pseudo-code describes the 

proposed GA-based fitness function: 

 

Algorithm 2. Proposed genetic algorithm fitness function  

Input: A binary string with size of N as a chromosome. 
Output: Fitness value R. 
Initialization:  
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 Set 
1  ,  }{ mF f f   as the full feature set of the dataset,  S   as the selected feature and 

  ‘  ’y target class . 

Steps: 

(1) Set  cnt count  number of 1 value in input binary string; 

(2) Set 0.01MI cnt    ; 

(3) for each feature 
if F   

(4) Compute   ; iI f y ; 

(5) end for 

(6) Find the feature 
 if which maximizes   ; iI f y  ; set } {  F F  ,    iS f  ; 

(7) while   F Ø   

(8) for each pair of features  ,i sf f  , where  if F  ,  sf S  

(9) Compute   ; i sI f f ; 

(10) end for 
(11) for each feature   if F   

(12) Compute      f   ; ;
s

i i i s

f S

J I f y I f f
S





 
    

 
  ; 

(13) end for 

(14) Choose the feature 
if   as the one that maximizes  fiJ   and set   max iMax j f ; 

(15) if  Max ≥ 𝛿𝑀𝐼 Max  MI   

(16) Set }   { iF F f   ,       iS S f   ; 

(17) else 
(18) Set }    { iF F f   ; 

(19) end if 
(20) end while 
(21) Set R by evaluating the S by using the proposed MI-BGSA fitness function; 
(22) return R; 

 

 

Assuming 0 ( ) 1iJ f  , so the threshold should be between 0 and 1. Therefore, each population in 

GA which represents a possible solution is coded with a binary string vector as a chromosome with 

a size of 100. The value of each bit is 0.01; it means the threshold will be accurate up to 2 decimal 

points. As seen in Algorithm 2, the generated feature subset in the MMIFS method will be evaluated 

using the proposed MI-BGSA fitness function which is originally used in the proposed MI-BGSA 

feature selection method (for evaluating each agent). The following pseudo-code describes the 

proposed MI-BGSA fitness function: 

 

Algorithm 3. MI-BGSA fitness function 

Inputs: 
1( , )Tr D F C and 

2( , )Te D F C as the training and testing datasets where F and C are the feature 

set and the target class, respectively. 
Output: fitness value R 
Steps: 

(1) Train SVM classifier using Tr 
(2) Test SVM classifier using Te 
(3) Compute DR and FPR using the test result of the previous step 
(4) Set R by computing the fitness value using Eq. (3-14) 
(5) return R 
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3.1.2 The Presented Approach 

As shown in Figure 1-1, in order to detect cyber-attacks, which may be launched by the Internet (or 

LANs), this thesis presents a novel misuse-based algorithm by introducing a new version of OPF 

called Modified OPF (MOPF). Optimum-path forest (Joao P Papa, Falcao, & Suzuki, 2009) is a 

graph-based machine learning method that reduces a classification problem into the problem of 

partitioning the vertices of a graph. This following characteristics leading to OPF became an efficient 

machine learning algorithm (Amorim & de Carvalho, 2012): 

 

 OPF is a simple and fast classifier. 

 OPF is a parameter-independent that originally supports multi-class problems. 

 OPF can handle partial overlapping among the classes due it does not make any assumption 

about the shape of classes. 

 OPF can be used in both classification and clustering problems. 

Generally, the proposed model consists of three main modules: (a) partitioning; (b) pruning; and (c) 

detecting. One of the main challenges in the OPF is the size of the training set. In the first module, 

the K-Means clustering algorithm was used as an unsupervised learning method for addressing the 

problem of scalability in large datasets. Moreover, this partitioning can enhance the detection 

accuracy of low-frequent attacks, such as R2L and U2R attacks, in the NSL-KDD dataset. The K-

Means clustering algorithm partitions the original heterogeneous training dataset into k homogeneous 

clusters which will be used as the training and evaluation datasets of k extended models of OPF 

named Advanced OPF (AOPF) in the detecting module. With the aim of speeding up the OPF, the 

centrality and the prestige concepts in social network analysis were used in the second module for 

pruning the training set of OPF by identifying and selecting the most informative samples. In our 

work, the proposed pruning module can identify informative samples, so the size of training and 

evaluation sets can be reduced for speeding up the OPF. Then, AOPFs were trained in the detecting 

module by using different training and evaluation sets which were projected in the first module. 

Before introducing the proposed method, some of the fundamental concepts used in the presented 

misuse-based IDS will be reviewed. 

 

3.1.2.1 Supervised Optimum-path Forest Algorithm 

In 2009, Papa et al. (Joao P Papa et al., 2009) introduced a supervised machine learning algorithm 

based on the graph theory, called optimum-path forest. They reduced a pattern recognition problem 

into an optimal graph partitioning in a given feature space. In the OPF, each sample is represented 

by a feature vector and is shown as a node in a complete weighted graph. The weighted arcs, which 

are defined by adjacency relations between samples, link all pairs of nodes in this graph. The arcs are 

undirected and the distance between two feature vectors is considered as the weight of arc in the 

complete graph. Each path connects a pair of nodes. A path is composed of a sequence of distinct 

samples and a connectivity function, such as the maximum arc-weight along the path, which assigns 

a cost to the path (Amorim & de Carvalho, 2012). Generally, the OPF-based classification is 

composed of two distinct phases: a) training and b) classification. In the training phase, some key 

samples from the training set, called prototypes, should be identified for each class in the classification 

problem. Then, the complete graph will be partitioned into optimum-path trees (OPTs) by a 

competitive process between prototypes (as the roots of the OPTs) which introduces optimum paths 

to the remaining nodes of the graph. The OPF will be composed of a union of OPTs. The nodes of 

OPT will be strongly connected to their prototypes as compared to other prototypes in the OPF. 

Hence, each sample that belongs to an OPT has the same class as its prototypes. In the classification 
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phase, all of the arcs that connect an unlabeled sample to all samples in the OPF are considered to 

classify that unlabeled sample. By evaluating the paths from the nodes of OPF to an unlabeled sample, 

a node can be found which offers an optimum path to that unlabeled sample. Hence, the class of an 

unlabeled sample will be same as the root’s class of the best node. In addition to the training and the 

classification phases, another phase (called learning) is usually used for improving the accuracy of 

OPF. The learning phase is performed by using the classification errors on the evaluation set. Suppose 

1 2 3Z Z Z Z    as a labeled dataset in which
1Z  , 

2Z  , and 
3Z  are the training, the evaluation, and 

the test datasets, respectively. It is noted that 
2Z  is used for improving the accuracy of learning model 

on 
3Z  by teaching the classifier using randomly selected samples of the same class from non-

prototype samples in 
1Z   and replacing them with the misclassified samples of

2 Z  (Amorim & de 

Carvalho, 2012). The details of OPF procedures are described in the following subsections. 

 

A. Training Phase 

Identification of the optimum set of prototypes, called *

1S Z  is one of the main processes in the 

training phase. Suppose 
1( , )G Z A  is a complete weighted graph with the specifications mentioned 

above. The samples in the training dataset are represented by the nodes of G, and each pair of samples 

is defined by its arc in 
1 1A Z Z   . To find the prototypes from

1Z  , an MST from G should be 

computed. The closest nodes of MST which have different labels in 
1Z  are the prototypes of OPF 

(Joao P Papa et al., 2009). The optimum set of prototypes ( *S ) is a set of prototypes that minimizes 

the classification error of the OPF training algorithm in 
1Z  (Joao P Papa et al., 2009). 

 

An OPT should be found in the training phase for each 
1s Z  that rooted a special prototype p S , 

where S is the set of prototypes. It means that the OPF classifier assigns one optimum-path from S 

to each sample 
1s Z . Notably, a sequence of distinct samples such as 1 2, , , ,t ks s s t   with 

terminus t is a path, and a path with one sample like t t   is called trivial(Joao P Papa et al., 2009). 

A path-value function 
maxf assigns a path cost to each path 

t . The 
maxf  is determined by Eq. (3-15) 

(Joao P Papa et al., 2009): 

 

        
0                   

    ,   . , max ,   ,
       

max max s max s

if s S
f s f s t f d s t

otherwise
 


 


                (3-15) 

 

where s is a training sample (i.e., (
1s Z )) and S represents the prototype set. Moreover, the distance 

between samples s and t is denoted by  ,d s t . The maximum distance between two adjacent samples 

along  .  ,s s t  is computed by   .  ,max sf s t  where  .  ,s s t  denotes the concatenation of 
s   and 

,s t  (as a path and an arc, respectively). Partitioning the OPF for computing OPTs is performed by 

minimization of 
maxf  which assigns an optimum path *( )P t  from the set of prototypes (

1S Z ) to 

every sample 
1t Z  whose minimum cost  C t  is calculated as follows (Joao P Papa et al., 2009): 

 

 
 

  
1,

max t

t

min
C t f

Z A




 

          (3-16) 

 

The minimization of 
maxf  is performed in the training phase of OPF. To see more details about the 

OPF training algorithm, refer to (Joao P Papa et al., 2009). 
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B. Classification and Learning Phases 
To classify each unlabeled sample such as t, we assume t as a part of the training set. Let all of the 

nodes and their arcs connect corresponding samples in the training set to t. The purpose of the 

classification phase is to find an optimum path *( )P t  from *S  (as optimum path prototypes) to t, 

and then labeling t with the class of its root which is shown by     L t R t , in which  R t  denotes 

the root of t and   R t  is a function that assigns the correct label to  R t  (Joao P Papa et al., 2009). 

The optimum path can be found incrementally by evaluating the optimum cost as follows (Joao P 

Papa et al., 2009): 

 

        1min max  ,   ,   ;     C t C s d s t s Z            (3-17) 

 

where  C s  is the minimum cost of s. Suppose *

1s Z  is the best node that satisfies Eq. (3-17). It is 

noted that     *L s R t , so the classifier assigns  *L s  to t as the class of t and an error is occurred 

when *( ) ( )L s t (Joao P Papa et al., 2009). 

 

One of the main challenges in building an efficient classifier is the quality of training samples in a 

classification problem. Hence, it would be interesting to select the most informative samples for 
1Z  

which can improve the accuracy of the classifier on
3Z . Papa et al. (Joao P Papa et al., 2009) presented 

a general learning algorithm for building an efficient classifier that used an evaluation set 
2Z  to 

enhance the composition of samples in the training set 
1Z  without changing its size. They used 

2Z  

for evaluating the classifier which was projected on
1 Z . Then, they replaced misclassified samples of 

2Z  with the samples of the same class from non-prototype samples in 
1Z  which were randomly 

selected. This process was repeated for T iterations by using the new sets of 
1Z  and

2Z . More details 

about the OPF classification and learning algorithms can be found in (Pereira, Nakamura, Costa, & 

Papa, 2012) and (JoãO P Papa, FalcãO, De Albuquerque, & Tavares, 2012). 

 

3.1.2.2 K-Means Clustering Algorithm 

Clustering is based on an unsupervised learning algorithm that can cluster data samples into disjoint 

partitions based on their similarities. The K-Means is a popular and crisp clustering technique (with 

non-overlapping partitions) that is a numeric, non-deterministic, and iterative method (Sangita & 

Dhanamma, 2011). Suppose { | 1,  2,   ,   }iD x i n    is a set of n samples. The K-Means algorithm 

partitions these samples into k clusters  1 2,   , , kC C C C   such that the following conditions be 

satisfied (Bakshi, Jagadev, Dehuri, & Wang, 2014): 

 

a) : 1 iC i k     

b) : 1  ,  ,i jC C i j k i j       

c) 
1

k

ii
C D


  

The main goal of K-Means clustering algorithm is to minimize the sum of dissimilarity of all samples 

in a cluster from the centroid. In other words, if a criterion is defined as follows: 
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                        (3-18) 

 

then we want to partition n samples into k clusters such that the above criterion within each cluster 

becomes minimum. In Eq. (3-18), 𝜇𝑖 is the centroid of all samples which belong to the cluster 
iC . 

Notably,  ng C  is the K-Means objective function in which 
2

1 j i

k

j i

i x C

x 
 

  (as an error function) 

shows the quality of the clustering. The steps of K-Means clustering algorithm are as follows (Sangita 

& Dhanamma, 2011): 

 

Step 1: Generate k random centroids from the dataset. 

Step 2: For each sample in the dataset, calculate its Euclidean distance from the centroids. 

Step 3: Assign each sample to a cluster that is the nearest to the centroid of the cluster based on the 

calculated Euclidean distance (computed in Step 2). 

Step 4: Recalculate the new cluster centroids by computing the mean of attribute values of the 

samples in each cluster. 

Step 5: Repeat Steps 2 to 4 until the stopping criterion is met. 

 

One of the key parameters in K-Means clustering algorithm is the value of k which has a great effect 

on the performance of the algorithm. The Davies-Bouldin (DB) index is used as the evaluation metric 

of K-Means clustering algorithm in this study (Davies & Bouldin, 1979): 
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1, ,

1

1
max ;        ,

k
i j

ij ij
j k

i ij

S S
DB R R j i

k d 



            (3-19) 

 

where 
iS   and 

jS  are the average distances of all elements in the ith and the j-th clusters from the 

centroid of each cluster, respectively. 
ijd denotes the distance between centroids of the i-th and the 

j-th clusters. As seen in Eq. (3-19), the DB index is a function of the ratio of the sum of within-cluster 

scatter to between-cluster separation. The within-cluster scatter should be minimized and the 

between-cluster separation should be maximized (Ray & Turi, 1999). 
ijR  in Eq. (3-19) shows the 

similarity measure of clusters. Moreover, 
ijR  is based on the dispersion measure of a cluster (

iS ) and 

the cluster dissimilarity measure (
ijd ) (Davies & Bouldin, 1979). The minimum value of DB index 

shows a better quality of the clusters and consequently better performance of K-Means clustering 

algorithm. To see more details about this metric, refer to (Davies & Bouldin, 1979). 

 

In the proposed model, K-Means clustering algorithm was used for partitioning the original training 

set to k clusters that were used as the training sets of k OPFs. This approach was used to addressing 

the scalability problem.  

 

3.1.2.3 Centrality and Prestige Concepts in Social Network Analysis 

The social network is a social structure made up of a set of nodes as the social actors who are 

connected by one or more specific types of interdependency. The social actors and their interactions 

or relationships can be represented by a graph. Hence, the graph theory is an essential approach 

which is widely used in the social network analysis. Identification of influential actors is one of the 

primary applications of the graph theory in the social network analysis for finding the most important 
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ones. Centrality and prestige (Wasserman & Faust, 1994) are two fundamental measures that are 

widely used for this purpose. By using the centrality measure in social network analysis, some actors 

who are extensively involved in relationships with other actors can be found (Musiał, Kazienko, & 

Bródka, 2009). A variety of metrics such as the degree centrality, the closeness centrality, and the 

betweenness centrality are used for measuring the centrality (Rusinowska, Berghammer, De Swart, & 

Grabisch, 2011). 

 

The prestige is a property that is derived from the patterns of social ties of a particular social network 

(Rusinowska et al., 2011). In the social network analysis, the prestige measure focuses on in-links. In 

other words, the opinion of other actors (which are expressed by their arcs) determines the 

importance of an actor (instead of the opinion of a special actor) (Varlamis, Eirinaki, & Louta, 2013). 

Different measures such as the node degree-based prestige, the proximity prestige, the rank prestige, 

and the node position are used for measuring the prestige (Musiał et al., 2009). The prestige measure 

differentiates in-links and out-links, so it is a more refined measure of prominence of an actor than 

the centrality in the social network analysis (Varlamis et al., 2013). In this study, we have solely 

focused on the betweenness centrality (BC) and the proximity prestige (PR). 

 

The BC measure indicates the importance of an actor in terms of connecting other actors 

(Rusinowska et al., 2011). In other words, BC is based on an actor who makes to tie two other actors 

in the social network, provided that this connection path is the shortest path between those two 

actors. For each pair of actors, this metric takes into account how many times a special actor can 

interrupt the shortest distance between two actors. In a directed graph, the BC is computed as follows 

(Wasserman & Faust, 1994): 

 

 
 

 ,     , ,

i j

i j k i j k i j

x x k

k

x x x x x x M x x

b x
BC x

b  

           (3-20) 

 

where M is the node set,  
i jx x kb x  is the number of the shortest paths between node 

ix and node 
jx  

that contains node
kx , and 

i jx xb is the number of the shortest paths between node 
ix  and node 

jx . 

 

The PR measure shows how much all other actors within a social network are closed to a special 

actor (Musiał et al., 2009). This metric takes into account the influence domain of an actor, which is 

a set of actors who are directly (or indirectly) connected to it (Perez, Chiclana, & Ahmadi, 2011). In 

a directed graph, PR is computed as follows (Musiał et al., 2009): 
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        (3-21) 

 

where n is the number of nodes (as actors in the directed graph) and 
iI  specifies the number of all 

actors who are in the influence domain of actor
ix . Moreover, 

jy  is an actor in the influence domain 

of actor
ix . The distance between two nodes 

jy and 
ix  is shown by  ,j id y x . 
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Figure 3-5: The framework of proposed misuse-based IDS. 

 

3.1.2.4 The Proposed Offline Misuse-based IDS  

In this section, the proposed IDS model is introduced. This model is based on a modified OPF. As 

mentioned earlier, there are three main modules in the proposed model: (a) partitioning; (b) pruning; 

and (c) detecting. In the partitioning module, the K-Means clustering algorithm is used as an 

unsupervised learning algorithm for grouping all samples from original training and evaluation sets 
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into smaller groups that will be used in the detecting module as the training sets of OPF classifiers. 

Before using the generated training and evaluation sets in the OPFs, the most informative samples 

are selected in the pruning module. In the pruning module, the BC and PR metrics, which were 

introduced in the social network analysis, are used for identifying the influential samples and selecting 

the most informative ones from the training and evaluation sets. Notably, for each generated training 

or evaluation set, the pruning module is employed as a preprocessing stage for the OPF classifiers. 

The detecting module is used for anomaly detection and classification of attacks. Different OPFs are 

projected in this module based on each of the pruned training and evaluation sets. In the classification 

phase of OPF, all of the arcs that link a new sample to the training samples are considered. In this 

way, the distance between the new sample and the root (prototype) of each training sample in the 

OPTs becomes important. The proposed IDS framework is depicted in Figure 3-5. According to 

Figure 3-5, these steps are followed in the proposed IDS framework: 

 

Step 1 (Preprocessing): One of the main challenges of the datasets used in machine learning is data 

imbalance. Therefore, it is essential to normalize the value of each feature to avoid data imbalance. 

As mentioned previously, in this study the NSL-KDD is employed for simulating the Internet (or 

LANs) traffic. The features in the NSL-KDD dataset have three different types: (a) continuous; (b) 

discrete; and (c) symbolic. These features have significantly different ranges and various resolutions; 

therefore, most of the classifiers are not able to process data in this format (Perez et al., 2011). In this 

study, all the features of the dataset were normalized before the partitioning phase. In a preprocessing 

step, the discrete features are normalized by transforming them into a suitable range (W. Wang, 

Zhang, Gombault, & Knapskog, 2009). Moreover, the symbolic feature should be replaced by 

numeric codes. Note, the value of numeric features was scaled by the statistical normalization as given 

below (W. Wang et al., 2009): 

 

 ;   1,  2,   ,  i
i

v
x i N






                                (3-22) 

 

where N is the number of instances in the dataset and 
iv  is the value of the ith instance in the dataset 

for the given feature.   and   are the mean and the standard deviation, respectively.  

 
Step 2 (Partitioning): In this step, the training set is portioned into k clusters by using K-Means 

clustering algorithm for overload reduction of the intrusion detection engine and also for addressing 

the problem of scalability in a large dataset. As seen in Figure 3-5 (Partitioning stage- Part 2), the 

engine should determine which preference group of the training samples is associated with a new 

sample (when a new sample is classified)? Then, the corresponding OPF will be selected for the 

classification process. As given in Eq. (3-23), the algorithm calculates the Euclidean distance between 

the new sample and the centroid of each cluster for finding the best cluster for a new sample. It is 

noted that the best cluster is selected based on the minimum Euclidean distance between its centroid 

and the new sample (as compared to the other centroids): 

 

      2 2 2

1 1 2 2

arg min
  ;1 i i m mix x x i k

i
                                    (3-23) 

 

where  1 2, , ,   mX x x x   and  1 2, , ,  i i i mi      are the new sample and the centroid of i-th cluster, 

respectively. 
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Step 3 (Pruning): As discussed earlier, each training set such as
iTR , should be pruned in this step 

based on the BC or the PR metrics (that were originally employed in the social network analysis) for 

finding the most informative samples. Before using one of these two metrics as a suitable metric for 

pruning the training set, the performance was compared based on the proposed pruning approach. 

According to the mentioned evaluation, one of the BC or the PR metrics was used as a suitable metric 

in the proposed pruning phase. The details of this comparison are discussed in Section 4.2 of Chapter 

4. Unlike the centrality measures (e.g., BC) which are used originally for undirected graphs, the 

prestige measure is used for directed graphs. Therefore, a directed graph should be extracted from 

the complete weighted graph to employ PR in the proposed model. On the other hand, the original 

complete weighted graph (which is used in the OPF) can be used for computing the BC; however, 

the order of computation time of the BC in weighted graph is  3O nm n logn (Bader, Kintali, 

Madduri, & Mihail, 2007) in which n is the number of nodes and m is the number of edges. In this 

study, the computation of the BC (or even the PR) is a time-consuming process due to the size of 

the input dataset. In order to deal with this problem, the solution of this thesis was inspired by the 

proposal of Kang et al. (Kang, Papadimitriou, Sun, & Tong, 2011) for large-scale networks. This 

proposal was grounded on a new graph called the directed line graph. In order to work with a graph 

consisting of a reasonable number of edges, the obtained extracted directed graph, which was used 

for computing the PR, was also employed for computing the BC. 

 

 
Figure 3-6: A simple example of generating a directed graph from a complete undirected graph 

 
In sum, a directed graph was used in the proposed model for computing BC and PR metrics. As 

mentioned earlier, we should create a directed graph from the complete graph that was originally used 

in the OPF for employing these metrics in the proposed model. In the directed graph, the directed 

relations between each pair of nodes are based on the m best neighbors. To do it, as shown in Figure 

3-6, for each node 
ix  in the complete undirected graph, an ordered list of m best neighbor nodes (as 

ix neighbors) will be selected based on the weight of the arcs (i.e., the most similarity to 
ix or 

minimum distance to 
ix ). By using these ordered lists, the direction of relations between the training 

samples can be identified for constructing the directed graph. When the directed graph was 

constructed, BC and PR were computed for each node in the directed graph (using Eqs. 3-20 and 3-

21, respectively). For example, according to the generated directed graph in Figure 3-6, BC and PR 

of node 
4x  are calculated as follows: 
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Our simulation results showed that in the OPF (unlike social networks), some samples that have the 

worst BC or PR are selected as the informative samples. When the BCs (or PRs) of all samples in the 

training and evaluation subsets are computed, then   percent of samples will be selected as the most 

informative samples according to the worst BCs (or PRs). In this study, the genetic algorithm (GA) 

is employed for finding an appropriate value for  . The GA, which is based on the evolutionary 

ideas of genetics and natural selection, is an adaptive heuristic search algorithm for solving 

optimization problems. Any population in the proposed GA represents a possible solution of 

appropriate  . In GA, a fitness function is used for evaluating the population. The fitness function, 

which is used in this study, is based on a proposed version of OPF (called advanced OPF (AOPF)) 

that will be explained in Step 4 of the proposed framework. The following pseudo-code describes 

the proposed algorithm for obtaining the fitness value (Algorithm 4): 

 

Algorithm 4. The proposed algorithm for obtaining fitness value in finding the optimum value of   

Input: A binary string with size of N as a chromosome (corresponding to  ). TR and TS are the training 

set and test set, respectively. 
Output: Fitness value R. 
Steps: 

(1) Set   as the count number of “1” values in the input binary string; 

(2) Set  S  as the betweenness centrality set (or the proximity prestige set) 

(3) Create a directed graph (DG) from the training samples;  
(4) for each node 

in DG (which is corresponding to 
is TR ) 

(5) Compute the BC (or PR) of 
in based on DG and add the result to S; 

(6) end 

(7) Set 
optimalS  by  percent of the worst values in S; 

(8) Set pruned TR (PTR) by the training samples corresponding to
optimalS ; 

(9) Create an OPF model from PTR by the OPF training algorithm; 
(10) Perform AOPF classification algorithm to classify the new samples in TS by using the OPF 

model; 
(11) Compute DR and FAR based on the classified samples; 

(12) Set R with the Euclidean distance between the points with coordinates of  ,  FAR DR and

 0%, 100% ; 

(13) return R; 

 
 
In Algorithm 4, the TR and TS are two new subsets of the NSL-KDD dataset that are used as training 

and test sets in the current simulation. More details about these sets and the GA parameter settings 
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will be discussed in Section 4.2 of Chapter 4. The GA fitness function is based on minimizing the 

Euclidean distance between the classification point such as i with coordinates of  ,  FARi DRi  and 

the perfect classification point with coordinates of  0%, 100% in a receiver operating characteristic 

(ROC) curve. The best point is a point that its Euclidean distance to the perfect point is the least as 

compared to other points. The Euclidean distance between the perfect point in the ROC curve and 

the current point with the coordinate of  ,  FAR DR  is computed in Step 12 of Algorithm 4. It is clear 

that the appropriate value of   should be between 0 and 100 ( 0 100  ). Therefore, each population 

in GA, which represents a possible solution, is coded with a binary string vector as a chromosome 

with a size of 100. 

 

Step 4 (Detecting): In this step, an OPF model will be projected for each pruned training (or 

evaluation) set. As seen in Figure 3-5, the learning algorithm which works based on the classification 

error of the OPF model on the evaluation set is used in a few iterations for improving the 

composition of samples in the training (or evaluation) set. To evaluate the performance of OPF 

models on the evaluation sets, the following accuracy metric is calculated in each iteration t (as 

mentioned in (Joao P Papa et al., 2009)): 
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where c is the number of the target classes and  E i  is the partial sum error of class i that is defined 

as follows (Joao P Papa et al., 2009): 
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where 2Z  is the size of 
2Z  and  2NZ i  is the number of samples in 

2Z  that belong to class i.  FP i  

and  FN i  are the false positive and false negative rates of class i on
2Z , respectively. After projecting 

efficient OPF classifiers, the new samples in the test set can be classified. 

 

 
Figure 3-7: Classification of a new unlabeled instance by using the projected OPF based on its distance from the OPT 

roots 

 
To classify a new unlabeled sample (in the learning and the classification phases of the OPF); all of 

the arcs that connect the unlabeled sample to the samples in the training set are considered (with the 

aim of finding an optimum path from prototypes to the unlabeled sample). However, in the proposed 
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new version of OPF, called AOPF, the distance between the unlabeled sample and the root 

(prototype) of each sample in the training set is also considered as an important factor for improving 

the performance of a traditional OPF (as shown in Figure 3-7). We assume that the proposed 

approach may select more appropriate training samples as compared to the traditional approach. 

Hence, it can lead to finding the best optimum path from the prototypes to the unlabeled sample. As 

seen in Figure 3-7, the cosine distance (CD) was empirically chosen instead of the Euclidean distance 

(ED) for computing the weight of arcs in the complete weighted graph. The computation time of 

ED is less than that of CD for high-dimensional datasets (e.g., NSL-KDD dataset); however, our 

experimental results showed that when we used the CD (as a distance measure for computing the 

weight of arcs), the performance of OPF was improved. Feature selection methods can be used for 

reducing the dimension and consequently the computation time reduction of CD in high-dimensional 

datasets. Moreover, each feature in the dataset may not be relevant to the classification task (e.g. due 

to the noise); therefore, choosing relevant features (as a proper subset of all features) can improve 

the performance of classifiers such as OPF.  

 

The CD is calculated using Eq. (3-26). As seen in Eq. (3-26), the cosine similarity is subtracted from 

1. Unlike the ED, the cosine similarity measures similarity instead of dissimilarity. The cosine 

similarity is originally used for finding the similarity of two feature vectors such as 

 1 2,   ,   ,s s s snX x x x   and  1 2, , ,t t t tnX x x x  : 

 

   

1

2 2

1 1

  .  
1 1 )

n

sj tjjs t

n n
s t

sj tjj j

x xX X
CD

X X
x x



 

   


 
           (3-26)

      

In the proposed classification phase of the AOPF algorithm, the ED is used for measuring the 

distance between a new unlabeled sample and the root of samples in the OPF. As mentioned earlier, 

an optimum path  *P t  from *S  to t (as an unlabeled sample) should be found for classifying t, where 

t is a part of the OPF. Therefore, the optimum path can be found incrementally by evaluating the 

optimum cost using Eq. (3-17). In the proposed AOPF, the ED between the root of each sample in 

the training set and the unlabeled sample (i.e.,   ,ED R s t ) is also considered in the cost function 

(Eq. 3-27): 

 

           1min max   ,   ,   ,   ;     C t C s CD s t ED R s t s Z           (3-27) 

 

where   is used as a weight which shows the impact of   ,ED R s t . By using Eq. (3-27), the 

classification algorithm of the OPF is changed as given in the following pseudocode (Algorithm 5): 

 

Algorithm 5. AOPF classification algorithm 

Input: Classifier '

1 1 1 1[ , , , ]P C L Z  where
1P  , 

1C  , 
1L  and '

1Z  are the optimum-path forest, cost map, label 

map and ordered list, respectively, the test set 
3Z  (or the evaluation set 

2Z ), and the pair of  ,v d  for 

feature vector and distance computations 
Output: Label 

2L  and predecessor 
2P  maps defined for

3Z . 

Auxiliary: Cost variables tmp and mincost. 
(1) for each 

3t Z   

(2) Set 1i   and        1max  , , . ,i i imincost C k CD k t ED R k t  ; 
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(3) Set    2 1 iL t L k  and  2 iP t k ; 

(4) while '

1i Z  and  1 1imincost C k    

(5) Compute        1 1 1 1max  ,  , . ,i i itmp C k CD k t ED R k t    ; 

(6) if tmp mincost   

(7) Set 𝑚𝑖𝑛𝑐𝑜𝑠𝑡 = 𝑡𝑚𝑝; 

(8) Set    2 1iL t L k    and  2 1iP t k   ; 

(9) end 

(10) Set 1i i   ; 
(11) end 
(12) end 

(13) return  2 2,L P ; 

 
 

In Algorithm 5, '

1Z  consists of all training nodes in non-decreasing order of the optimum path cost. 

1C  and 
1L  are the optimum path cost and the class label of the corresponding sample in '

1Z  , 

respectively. Moreover, 
2L  and 𝑃2 represent the parent (predecessor) and the label of each classified 

sample in tthe est set, respectively. Algorithm 5 is akin to the original classification algorithm (JoãO 

P Papa et al., 2012); however, Steps 2 and 5 are altered. As seen in Step 5 of Algorithm 5, a training 

sample (e.g.,
1ik 
) whose root (e.g.,

1ikR


) is distant from the unlabeled sample t (based on

  ,iED R k t ), will be ignored by Step 6, because the long-distance represents the low similarity 

between t and 
1ikR


. It means that the ki+1’s OPT (in which the 
1ikR


 is the OPT’s root) may not be 

an appropriate OPT for t. In other words, the class of 𝑘𝑖+1 may not be appropriate for t. As 

mentioned earlier, this approach can select more appropriate training samples as compared to the 

traditional approach in finding the best optimum-path from the prototypes to the unlabeled sample. 

 

In this study, the GA is used for finding an optimum value for  . The following pseudo-code 

describes the proposed algorithm for obtaining the fitness value (Algorithm 6): 

 

Algorithm 6. The proposed algorithm for obtaining fitness value in finding the optimum value of   

Input: A binary string with size of N as a chromosome (corresponding to  ). TR and TS are the training 

set and test set, respectively. 
Output: Fitness value R. 
Steps: 

(1) Set cnt as the count number of 1 values in the input binary string; 

(2) Set 0.001cnt   ; 

(3) Create an OPF model from the training set by the OPF training algorithm; 
(4) Perform AOPF classification algorithm to classify new samples in the test set; 
(5) Compute DR and FAR based on the classified samples; 

(6) Set R with the Euclidean distance between the points with coordinates of  ,  FAR DR  and

 0%, 100% ; 

(7) return R; 

 
 
We have experimentally found that the right amount of   should be between 0 and 1 ( 0 1  ). 

Therefore, each population in GA which represents a possible solution of appropriate   is coded 

with a binary string vector as a chromosome with a size of 1000. The value of each bit is 0.001; it 

means the threshold will be accurate up to three decimal places 
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3.2 Insider-Attack Identification 
As mentioned in Chapter 1, every layer of 6LoWPAN stack can be threatened by various attacks. 

However, because the routing attacks can take control of the information flow of networks, most of 

attacks focus on disturbing the network layer functionalities through the routing attacks, especially 

selective forwarding and sinkhole attacks. In order to detect these kinds of attacks and determine 

their types, this thesis presents a novel real-time hybrid intrusion detection framework that was based 

on anomaly-based and specification-based intrusion detection. Actually, in order to detect anomalies 

and identify the malicious nodes, the specification-based IDS agents located in 6LoWPAN nodes 

send their analytical results to the border router of 6LowPAN (6BR). Then anomaly-based IDS agent 

located in 6BR detects anomalies and identifies malicious nodes. Note the anomaly detection engine, 

which is based on MapReduce architecture, uses unsupervised OPF called Optimum-path Foreset 

Clustering (OPFC) for identifying anomalies. Moreover, the proposed IDS will make its final decision 

about detected anomalies and their types through a voting mechanism. Before introducing the 

proposed method, some of the fundamental concepts used in the presented real-time IDS will be 

reviewed. 

 

3.2.1 Unsupervised Optimum-Path Forest 

In 2009, Rocha et al. (Rocha, Cappabianco, & Falcão, 2009) introduced an unsupervised machine-

learning algorithm for data clustering based on the graph theory called Optimum-Path Forest 

Clustering (OPFC). They reduce the clustering problem, as a pattern recognition problem, into 

optimal graph partitioning in a given feature space. In the OPFC, each sample in the dataset 

(represented by a feature vector) is shown as a node in the k-nearest neighbor graph (
k nnG 

) that is 

connected with its k best neighbors in given feature space (Costa et al., 2015). In OPFC, the arcs are 

weighted by the distance between each pair of nodes and the nodes are weighted by the probability 

density function (pdf) of each node that is based on the distance between the samples and their k-

nearest neighbors (Costa et al., 2015). When 
k nnG 

 is created, the OPFC algorithm will find one 

sample (node) at each maximum pdf as a root of a dome or cluster which includes dense samples in 

the feature space. Then, an Optimum-Path Tree (OPT) will be created from each root to every node 

in the influence zone (cluster) such that each OPT node will be strongly connected to its root as 

compared to other obtained roots in the 
k nnG 

 (Rocha et al., 2009). The OPF will be composed by a 

union of the OPTs. 

 

Suppose Z  as a clustering dataset such that each s Z is shown by  v s  in the given feature space. 

The  ,k nn kG Z A   is defined such that the arcs in 
kA  connect k-nearest neighbors in the feature 

space (Costa et al., 2015). In 
k nnG 

, each arc  , ks t A  is shown by      ,d s t v t v s    which denotes 

the Euclidean distance between the corresponding feature vectors of s and t. As mentioned earlier, 

each s Z  is weighted by a probability density function defined as follows (Costa et al., 2015): 

 

 
   

 2

22

,1

22 kt A s
k

d s t
p s exp

A s   

 
   

 
                                       (3-28) 

 

where  kA s k  , 
3

fd
   , and 

fd  is the maximum arc weight in 
k nnG 

 . It is noted that  kA s  is 

the neighbor set of s Z . Since the arcs in 
kA  are asymmetric, hence the symmetric arcs should be 
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added to the plateaus of pdf as given in Eq. (3-29) to guarantee a single root per maximum (cluster) 

(Rocha et al., 2009): 

 

               ,         k k k kif t A s s A t and p s p t then A t A t s                         (3-29) 

 

In OPFC, a path 
t  that includes a sequence of distinct adjacent nodes starts from the root of   t R t  

and is terminated with t. Note that a path with one sample like t t  called trivial and  .  ,s s t  

represents the concatenation of 
s  and ,s t  denoting a path and an arc, respectively (Costa et al., 

2015). In the OPFC algorithm, a connectivity function  tf   assigns a path cost to each path 𝜋𝑡. 

For other paths, such as
t  , if    t tf f   then 

t  will be an optimum path (Costa et al., 2015). 

Among all possible paths from a root in the maxima of the pdf, the OPFC will assign a path as the 

optimum-path  *P t   to the t Z   such that the minimum density value along the path is maximum 

(Costa et al., 2015):  

 

 
 

  
, min t

t k

max
v t f

Z A




 

                          (3-30) 

  

where  min tf    is defined as follows: 
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where          , |ks t A p t p s
min p t p s

  
   (Notably, larger values of   will lead to the maxima reduction) 

and R is the set of OPF’s root which is found on-the-fly, with one element per each maximum of the 

pdf (Costa et al., 2015). The algorithm tries to maximize the connectivity map  v t  by computing an 

OPF, which assigns the predecessor  p t  to each sample t R  or mark nil when t R . The following 

pseudo-code describes the OPFC algorithm (Costa et al., 2015): 

 

Algorithm 7. OPFC implementation 

Input: Graph  , kZ A  and distance function d. 

Output: Optimum-path forest P, connectivity map V and label map L. 

Auxiliary: Priority queue Q, density map p, variables tmp and 1l    

(1) for each s Z  

(2) Compute  p s  by Eq. (3-28); 

(3) Set  P s nil ,    V s p s    , and insert s in Q; 

(4) while Q is not empty, do 

(5) Remove from Q a sample such that  V s  is maxim; 

(6) for each  kt A s  such that    V t V s   

(7) Compute     min ,tmp V s p t ; 

(8) if  tmp V t  then 

(9) Set        ,  , L t L s P t s V t tmp    ; 

(10) Update position of t in Q; 
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(11) end 
(12) end 
(13) end 
(14) end 

(15) return a classifier  , ,P V L ; 

 
 
An OPFC model classifies a new sample to a special cluster (that is created in the OPFC algorithm), 

by finding a root which provides the optimum path to the new sample. Therefore, in order to classify 

a new sample \t Z Z   according to the neighbors of t (  ks A t Z   ), the algorithm computes the 

pdf of t by using Eq. (3-28). Then, the optimum path can be found incrementally by evaluating the 

optimum cost as follows (Rocha et al., 2009): 

 

 
 

     
max      

,
,

ks t A
v t min v s p t

 
                                 (3-32) 

 

Suppose *s Z  is the best node that satisfies Eq. (3-32), so the classifier selects the cluster of *s   as 

the class of t. 

 

One of the main challenges in the OPFC algorithm is determining the optimal value for k (k-nearest 

neighbors). Generally, k can fall in  min mink ,k  ( min max1 k k Z   ) (Rocha et al., 2009). Rocha et al. 

(Rocha et al., 2009) used the graph-cut metric for finding the proper value for k. suppose 
 

1

d s, t
 is 

the weight of edges in
k nnG 

 . According to Algorithm 7 for each  1, 1k N     the value of graph-

cut can compute as follows: 
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The best value for graph-cut can be obtained by minimizing  C k  such that '

iW  employes all arc 

weights between cluster i and other clusters, and 
iW  employes all arc weights within a cluster. To see 

more details about the OPFC algorithm, refer to (Costa et al., 2015). 

3-2-2 MapReduce Approach 

Today, one of the main challenges of well-known corporations, such as Google or Yahoo, is the 

maintenance and analysis of big data for extracting useful knowledge. MapReduce approach (Dean 

& Ghemawat, 2008) is an efficient solution for big data problems. This approach employs algorithms 

that have parallelism capabilities in a parallel space. The MapReduce, which was first presented by 

Google, is a parallel programming model that is inspired by a functional programming language such 

as Lisp. This approach hides the details and complexity of parallel computation, data distribution, 
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and fault tolerance (Dean & Ghemawat, 2008). In this approach, a big dataset is split into smaller 

datasets and stored on different machines. Then, these machines process the smaller datasets in 

parallel and finally, the results will be integrated. In fact, this algorithm reduces the intermediate space 

to the final solution space. 

 

The MapReduce approach includes two main phases: (a) Map and (b) Reduce. As shown in Figure 

3-8, in the Map phase, input data is split into smaller segments named chunk. Then, they are delivered 

to some machines called mappers who are responsible for the mapping operation (Aridhi, Lacomme, 

Ren, & Vincent, 2015). Then, each mapper converts the content of the chunk to a sequence of key-

value pairs and consequently for each pair, a list of key-value pairs is generated by calling the user-

defined “map” function (    1 1 2 2, ,map k v list k v ) (Aridhi et al., 2015). In the Reduce phase, the 

MapReduce framework performs sorting based on the keys and collects each key-value pair with the 

same key and sends them to the reducer node. In fact, a group consists of key-value pairs, which have 

the same key, will be produced in the Reduce phase for each generated key in the Map phase. Then, 

the user-defined “reduce” function accepts the mediate keys with a set of values representing the 

dimension of keys and merges the values by converting them to a smaller value (i.e., reducing the 

dimension) (    2 2 3, ( )reduce k list v list v ) (Dean & Ghemawat, 2008). 

 

 
 

Figure 3-8: A block diagram of MapReduce operation 

3-2-3 The Proposed Real-Time Anomaly-Based and Specification-Based IDS 

As mentioned earlier, this study concentrates on detecting selective forwarding and sinkhole attacks 

as well-known insider-attacks in IoT which can get the control of data flow in 6LoWPAN. In this 

study, the intrusion detection task in the 6LoWPAN is presented as the following problem: 

 

Suppose a 6LoWPAN network, which includes m+n homogeneous sensor nodes 

(    1 1 |   ,   ,  ,    , ,m nS L R L l l R r r      ) and one power root node as the 6BR. Assume that only m 

leaf nodes are responsible to generate data (e.g., by sensing the ambient temperature) as the source 

nodes and sending them (in packets’ form) through n router nodes to the root node. The routing 

packets are based on the RPL protocol by using the DODAG graph. We assume that the RPL 

protocol supports solely unidirectional traffic from the leaves (sources) to the root. In this network, 

the attacks are caused by malicious nodes (
as R ) that perform as valid nodes. The goal of the 
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proposed model is detecting outlier behaviors (as attacks) and identifying the malicious nodes that 

cause these behaviors. 

 

Figure 3-9 shows the block diagram of the proposed framework. As seen, the proposed model is a 

hybrid method based on centralized and distributed intrusion detection models. This model consists 

of an Anomaly Agent-based IDS (AA-IDS) and some Specification Agent-based IDSs (SA-IDSs). In 

the proposed model, each router node monitors the input/output traffic and identifies the potential 

malicious nodes by using the SA-IDS, independently. Then, they send analysis results to the 6BR by 

embedding them into packets to be forwarded. In the 6BR, the AA-IDS projects some clustering 

models (based on the OPFC algorithm) for clustering the collected data and detecting anomalies. The 

task is performed based on features of each source node that were extracted from the incoming 

traffic. Then, the algorithm makes a final decision based on the local results of SA-IDS agents (which 

are hosted in the router nodes) and the global analysis results of the AA-IDS agent. In the proposed 

model, it is assumed that the attack traffic is much less than the normal traffic (Eik Loo, Yong Ng, 

Leckie, & Palaniswami, 2006). In the proposed framework, the intrusion detection and the 

identification of the malicious nodes are performed in the following three stages: 

 

 
Figure 3-9: Block diagram of the proposed intrusion detection framework 

Stage 1 (identifying malicious nodes): the goal of this stage is identifying the suspicious nodes 

that may cause sinkhole and selective forwarding attacks in the 6LoWPAN. Identifying the suspicious 

nodes is based on a stand-alone architecture and is performed by using some light SA-IDSs that are 

located in the router nodes. Table 1 reviews the operation of the selective forwarding and sinkhole 
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attacks in a WSN (Yan, Wang, Wang, & Liu, 2010). As seen in Table 3-1, the selective forwarding 

attack influences packet transmission, while the sinkhole attack has an adverse effect on the routing 

of packets. 

 
Table 3-1: The comparison of two attacks in a WSN 

Attack name Behavior 

Selective forwarding Data forwarding misbehavior 

Sinkhole Route updating misbehavior 

 
In the proposed model, the SA-IDS works as detailed below to detect these attacks: 

 

1)  Identifying suspicious nodes launching sinkhole attack: According to the sinkhole action 

which was mentioned in Section 2.2.2, Figure. 3-10 shows the influence of malicious node S on node 

A in the DODAG. 

 

 
Figure 3-10: Sinkhole attack action in the DODAG 

 
As seen in Figure 3-10, when node S (as a sinkhole attacker) wants to launch a sinkhole attack, it 

attracts node A to route the traffic through node S. Hence, node A adds node S to the parent set and 

selects it as a preferred parent for routing its packets. After a short time, node S resumes again its 

normal behavior. Therefore, node A removes it from the parent set and selects node B again as the 

preferred parent. Based on this action, the SA-IDS which is located in the router node (such as A) 

computes the rate of change in preferred parent and also the rate of change in the parent set at each 

time-slot w (as the non-traffic-related features) for identifying suspicious node (based on the 

routing table). If these values are greater than a predefined threshold, then the SA-IDS will identify 

and introduce the suspicious node. The following pseudo-code describes how a suspicious node (i.e., 

the agent of sinkhole attack) is identified by its lower node in the SA-IDS agent (Algorithm 1): 

 

Algorithm 8. Detecting sinkhole suspicious node 

Input: ParentSetThreshold and PreferredParentThreshold which represent the threshold for detecting anomaly behavior in 

the parent set and the preferred parent, respectively. w  and 
0t  represent the length of the time window and the 

current time, respectively. 
Output: SID represents the ID of a suspicious node. 

Auxiliary: 
1cnt  and 

2cnt  represent the count of change in length of the parent set and the preferred parent, 

respectively. CurrentLength and CurrentPreferredParnet represent the current length of the parent set and the ID of the 

current preferred parent, respectively. PHList represents the preferred parent history list (with the ,PID timeSpan

item list structure where timeSpan shows the time interval that the node with PID node ID is a parent). LastChangeTime 
represents the time of the last change in the preferred parent. 
Initialization: 

 Set
0t t  , 

1 0cnt   , 
2 0cnt   , SID nil  and

0 LastChangeTime t ; 

 Set  CurrentLength Length ParentList  andCurrentPreferredParnet PreferredParent  ; 
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Steps: 

(1) while
0 wt t    , do 

(2) if  CurrentLength Length ParentList  then 

(3) Set 
1 1 1cnt cnt  ;  

(4) Set  CurrentLength Length ParentList ; 

(5) end 

(6) if CurrentPreferredParnet PreferredParent  then 

(7) Set 
2 2 1cnt cnt  ;  

(8) Set timeSpan t LastChangeTime  ; 

(9) Add ,CurrentPreferredParnet timeSpan  to PHList; 

(10) Set CurrentPreferredParnet PreferredParent ; 

(11) Set LastChangeTime t ; 

(12) end 

(13) Set t t t    ; 

(14) end 

(15) if  
1 / wcnt ParentSetThreshold   and 

2 / w  cnt PreferredParentThreshold   then 

(16) Compute the total duration of each PID in PHList and add them as an ordered pair  ,  PID timeSpan to a 

tempList; 

(17) Sort tempList according to the timeSpan of node’s ID and set SID as the node’s ID with the minimum value; 

(18) end 

(19) return SID; 

 
In the proposed model, we assume that the time interval that a malicious node is selected as the 

preferred parent is shorter than the corresponding time interval for other nodes (presenting the 

normal behavior). Therefore, as seen in lines 16 and 17 of Algorithm 8, if the non-traffic-related 

feature values are greater than the predefined thresholds, then the algorithm computes the total 

duration that each node was selected as a preferred parent of the host node (a node which the SA-

IDS is located in it). Then, a node that corresponds to the minimum time interval will be introduced 

as a suspicious node. 

 

2) Identifying suspicious nodes launching selective forwarding attack: According to the 

selective forwarding action which was mentioned in Section 2.2.2, Figure 3-11 shows the influence 

of malicious node S on node A in the DODAG. 

 

 
 

Figure 3-11: Selective forwarding attack action in the DODAG 

 
When a malicious node wants to launch a selective forwarding attack, it selectively forwards packets 

to the root. So, a preferred parent node can identify the suspicious node by knowing the approximate 

number of packets received from each node (such as node S in Figure 3-11). In the proposed model, 

SA-IDS which is located in a router node (such as A) computes the packet receiving rate and the last 

packet received time at each time-slot w (as the traffic-related features) for each child node for 

identifying the suspicious node. For each child node such as S, if the packet receiving rate is smaller 
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than a predefined threshold, and the last packet received timestamp is greater than a predefined 

threshold, then the SA-IDS will introduce node S as a suspicious node. The following pseudo-code 

describes how a suspicious node (i.e., the agent of selective forwarding attack) is identified by its 

upper node in the SA-IDS agent (Algorithm 9): 

 

Algorithm 9. Detecting selective forwarding suspicious node 

Input: PacketReceivingThreshold and TimeDelayThreshold represent the threshold for detecting anomalous behavior in 

packet receiving rate and the last packet receiving timestamp, respectively. w  and 
0t  denote the length of the time 

window and the current time, respectively. 
Output: SIDList represents the list of suspicious node IDs. 
Auxiliary: packetItem with the format of the packet introduced in Figure 3-12. ChildList with the 

, ,ID time PacketReceiving  item list structure which used the child’s packet information where time shows the last 

time that a packet is received and PacketReceiving represents the number of packets that have been received. 
Initialization: 

 Set 
0t t   ,   SIDList nil  and  childList nil ; 

Steps: 

(1) while
0 wt t    do 

(2) Set   packetItem getPacket ; 

(3) Set  .  NodeID packetItem getRouterID ; 

(4) Set  .  TimeStamp packetItem getRouterTimeStamp ; 

(5) if ChildList has an item with a key equals to NodeID then 

(6) Set index = index of an item in ChildList that has a key equals to NodeID 

(7) Set    .  . ChildList index TimeStamp t ChildList index TimeStamp  ;  

(8) Set    . . 1ChildList index PacketReceiving ChildList index PacketReceiving  ; 

(9) end 

(10) else 

(11)  0. , ,1ChildList Add NodeID t t ; 

(12) end 

(13) Set t t t   ; 

(14) end 

(15) for each item in ChildList do 

(16) if . / witem PacketReceiving PacketReceivingThreshold   and  

 .item TimeStamp TimeDelayThreshold  then 

(17)  . .SIDList Add item NodeID ; 

(18) end 

(19) end 

(20) return SIDList ; 

 
 

In step 2 of Algorithm 9,   getPacket represents a function that returns the current received packet 

information. Notably, we design and implement a WSN based on the RPL routing protocol in this 

study for simulating 6LoWPAN functionality (see Chapter 4). Generally, the structure of data packets 

in the simulations consists of two main parts (as shown in Figure 3-11): (a) data (fields) and (b) data 

access interface (functions). 

 

In Figure 3-12, SrcID and SrcTimeStamp represent the ID of the source node and the time of packet 

sending by the source node, respectively. RouterID and RouterTimeStamp represent the ID of the last 

router node (before the current node) and its forwarding packet time, respectively. RouterID and 

RouterTimeStamp are obtained by using   getRouterID and   getRouterTimeStamp  functions, 

respectively. HopCount shows the number of hops taken by the packets and each router node 
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increments it by   incHopCount  function. One of the main fields used by the SA-IDS agent is 

SuspiciousList. In fact, when SA-IDS identifies a suspicious node, then SA-IDS adds an item with 

format , ,SID Type TimeStamp (as the suspicious node information) to the SuspiciousList by using 

  addSuspiciousList . The SID, Type, and TimeStamp represent the suspicious node’s ID, the type of 

possible attack, and the identification time of suspicious nodes, respectively. We assume that the 

router node cannot access the Data and SuspiciousList with the aim of manipulating values). 

 

 
Figure 3-12: Structure of data packets in the simulated WSN 

 
Stage 2 (anomaly detection in 6BR):  in this stage, the AA-IDS creates a sample for each source 

node by extracting four traffic-related features from the raw received packet of the source node at 

each time-slot w : (a) packet receiving rate; (b) packet dropping rate; c) average latency; and (d) 

maximum hop-count. Then, the AA-IDS projects a clustering model based on an unsupervised OPF 

algorithm for each source node by using its generated samples. The algorithm selects a cluster (or 

clusters) including a few samples and then labels the samples as anomalous for each projected model. 

 

By increasing the number of source nodes, the sequential projection of clustering models will be 

time-consuming that is not acceptable for a real-time model. The proposed anomaly detection 

method has the capability of parallelism because projecting and using clustering models are 

independent processes. In this study, we inspired the MapReduce approach to improving the speed 

of projecting models and anomaly detection. In fact, we proposed an anomaly detection method 

based on the MapReduce architecture. In other words, if an appropriate platform 

(hardware/software) is prepared, then the model can run in parallel on a distributed space based on 

the MapReduce architecture. Figure 3-13 shows the general architecture of the proposed anomaly 

detection model which is based on the MapReduce approach. 

 

 
Figure 3-13: General architecture of anomaly detection model based on the MapReduce approach 
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As seen in Figure 3-13, the root node (i.e., the 6BR) extracts mentioned traffic-related features from 

the receiving raw packets in each time-slot and creates a new sample for source nodes. Then, it sends 

the sample’s information with key-value pair format to a node (i.e., the reducer) that is responsible to 

work with a special key. This format includes source ID as the key and feature vector as the value. 

Then, the reducer node projects a clustering model by using its samples which are received from the 

mapper node. As mentioned earlier, we assume that a cluster with fewer samples is an anomaly; 

hence, if the new sample belongs to this cluster, it is classified as anomalous and otherwise, it is 

classified as a normal sample. So, the reducer node returns a new key-value pair with ,SID Label  

format (in response to the incoming key-value pair) to the root node. It is noted that the key and the 

value are source ID’s sample and its label (i.e., anomalous/normal), respectively. The projecting of a 

clustering model in reducer continues until the number of samples for each source becomes equal to 

a threshold. Then, the reducer works as a classifier that means if the new received sample (from the 

mapper) belongs to the anomalous cluster(s), it will be introduced as an anomalous sample. In the 

step of extracting features for producing a new sample for each source node, such as A, the packet 

dropping rate is computed based on the following steps at each time-slot: 

 

1) Sort the received packets from node A based on its SequenceNumber. 

2) Calculate the sum of the distances between every two consecutive packets (based on 

SequenceNumber) and return the result as the packet dropping rate (for simplicity, we assume 

that each packet is sent only once). 

Moreover, other features such as the maximum hop-count and the average latency are computed as 

follows: 

 

  :   .    |  i i

ji L MaxHopCount Max packet getHopCount j P                        (3-36) 
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

   (3-37) 

 

where L is the set of source nodes in the network. iP is the set of received packets from the i-th 

source in time-slot w  and iP  is the number of its members.  

 

Stage 3 (anomaly detection decision based on a voting mechanism): in this stage, the proposed 

framework employs the first stage results to make a decision about abnormities detected in the second 

stage. The following pseudo-code describes the voting process at this stage (Algorithm 10). 

 

Algorithm 10. A voting mechanism for making a decision about intrusion detection 

Input: AR and SR as anomaly-based and specification-based detection results. 

Output: AttackList as the list of detected attacks. 

Steps: 

(1) for each ,  i iSrcID Label AR  do 

(2) if 1iLabel    then 

(3) Set index = index of SR where 
iSrcID SrcID ;  

(4) If index nil  then 

(5)      Set , . , .iAttackList SrcID SR SID SR Type ; 
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(6) end 
(7) end 
(8) end 

(9) return AttackList ; 

 
So, Algorithm 10 returns a list which includes the information about source node ID, malicious node 

ID, and the type of attack, respectively (by this format: , ,SrcID AttckNodeID AttckType  ).  
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 Experimental Results 
 

 

 
 

Over this chapter, the simulation results of the presented intrusion detection model are reported and 

discussed in separate parts. In the first part, the proposed cyber detection system, which consists of 

the preprocessing and offline misuse-based IDS phases is evaluated in details. Then, in the second 

part, the experimental results of employing the proposed real-time IDS in a simulated RPL-based 

WSN are evaluated, completely. However, before anything, the applied standard metrics that are used 

in evaluating the proposed methods will be reviewed. 

4.1 Evaluation Criteria 
There are diverse standard evaluation criteria, which are employed to evaluate the performance of 

the proposed methods. As can be seen in Eqs. 4-1, 4-2 and 4-3, the True Positive Rate (TPR) or DR, 

the False Positive Rate (FPR) or FAR and the Accuracy Rate (AR) are calculated as follows: 

 

TP
TPR

TP FN



                             (4-1) 

FP
FPR

TN FP



                             (4-2) 

 

 

TP TN
AR

TP TN FN FP




  
                          (4-3) 

 

where TP is the number of positive instances (attacks) that are classified correctly and FN is the 

number of positive instances (attacks) that are classified incorrectly. Furthermore, FP is the number 

of negative instances (normal) that are classified incorrectly and TN is the number of negative 

instances (normal) that are classified correctly. In addition to the aforementioned metrics, the Cost 

Per Example (CPE), which is widely used in evaluating the intrusion detection systems, is computed 

as follows: 

 

   
1 1

1
,  . ,

m m

i j

CPE CM i j C i j
T  

                (4-4) 

 
Table 4-1: Cost matrix for NSL-KDD dataset 

Actual Predicted 

Normal DoS Probe R2L U2R 

Normal 0 2 1 2 2 
DoS 2 0 1 2 2 
Probe 1 2 0 2 2 
R2L 3 2 2 0 2 
U2R 4 2 2 2 0 

 

where T and m denote the total number of samples in the test set and the number of classes in the 

classification problem, respectively. CM is a square matrix, called confusion matrix, in which rows 
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represent the actual classes, while the columns correspond to the predicted classes. Each cell, such 

as  ,CM i j  in the confusion matrix, represents the number of samples that originally belong to class 

i, but they are classified in class j. The cost penalties for this misclassification are represented by a 

cost matrix that is presented in Table 4-1 for the NSL-KDD dataset (Agarwal & Joshi, 2001). 

 

4.2 The Experimental Results of the Proposed Feature Selection 

Algorithm 
As mentioned previously, in order to select the optimal features of the NSL-KDD dataset, which is 

used for simulating the Internet (or LANs) traffic, this thesis presents a hybrid feature selection 

algorithm called MI-BGSA. In this section, an anomaly-based intrusion detection method that is 

based on SVM is used to evaluate the performance of the proposed algorithm. As shown in Table 4-

2, the SVM was trained using 10,000 selected instances from NSL-KDD dataset in 100 iterations, 

and then, it was evaluated using another 5,000 selected instances of NSL-KDD dataset. Moreover, 

the applied dataset is normalized based on the normalization method that is mentioned in section 

3.1.2.4.  

 
Table 4-2: Size of the training and test datasets 

dataset # Instances # Normal Instances # Anomaly Instances 

Training set 10,000 5,249 4,751 
Test set 5,000 2,137 2,863 

 

In this experiment, I compared the proposed model with the standard BGSA and the binary PSO 

(BPSO) (Nezamabadi-pour, Rostami-Shahrbabaki, & Maghfoori-Farsangi, 2008) feature selection 

methods. The parameters setting of the proposed MI-BGSA, BGSA, and BPSO feature selection 

methods is reported in Tables 3, 4 and 5, respectively.  

 
Table 4-3: Parameters setting of MI-BGSA-based feature selection method in simulations 

Parameters MI-BGSA 

N 5 

maxt   30 

0G   100 

maxv   6 

   0.5 

MI   0.12 

 

 
 

Table 4-4: Parameters setting of BGSA-based feature selection method in simulations 

Parameters BGSA 

N 5 

maxt   100 

0G   100 

maxv   6 
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Table 4-5: Parameters setting of BPSO-based feature selection method in simulations 

Parameters BPSO 

N 5 

maxt   100 

maxv   6 

1c   2 

2c   2 

w   0.2 

 

As shown in Tables 4-3, 4-4 and 4-5, the feature selection methods assumed n = 5 (as an initial 
population) and 

max 100t  (as the maximum number of iterations). The maximum velocity and the 

gravitational constant are set to 
max 6v  and 

0 100G  , respectively. As seen in Table 4-3, we set 0.5   

similar to (Amiri et al., 2011). The initial value of the inner-optimization module threshold in MI-
BGSA is 0.12MI  , which is computed by the proposed GA-based method (Algorithm 2 in Chapter 

3). In the BPSO algorithm w is the inertia weight or the momentum of particles that shows the effect 
of the previous velocity on the new velocity and c1 and c2 control the stochastic influence of the 
cognitive and social components of the overall velocity of a particle (Sheikhan, 2014). We assumed 

1 2 2c c  and 0.2w  . 

 

 

Figure 4-1: Average accuracy rate when using SVM classifier and MI-BGSA/BGSA/BPSO feature selection methods 

In this thesis, the feature selection methods are implemented by MATLAB R2014a on a PC with an 
Intel(R) Core (TM) i5-4460, CPU 3.20 GHz and 8 GB RAM. All the feature selection methods were 
run three times and the average of AR, DR, and FPR are reported. 
 
In this experiment, the optimum feature subset was considered. It means that the proposed method 
was found to be the best subset of features that maximizes the fitness function. The performance of 
the proposed model was compared to BGSA and BPSO, in terms of AR, DR, and FPR. We run the 
feature selection methods three times using SVM classifier. The average runtime behavior of AR, 
DR, and FPR in 100 iterations of different methods on NSL-KDD dataset are depicted in Figures 4-
1, 4-2 and 4-3, respectively. 
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Figure 4-2: Average DR when using SVM classifier and MI-BGSA/BGSA/BPSO feature selection methods 

 

Figure 4-3: Average FPR when using SVM classifier and MI-BGSA/BGSA/BPSO feature selection methods 

 
As shown in Figures 4-1 and 4-2, the proposed method performs better in terms of accuracy rate and 

detection rate. In other words, the proposed algorithm was not only concerned with reducing the 

number of features but also improved the performance of classification. Therefore, using the 

information theory in the BGSA feature selection method (with the aim of considering both feature–

feature and feature–class mutual information) can improve the efficiency of standard BGSA. This 

search strategy, which was used as an inner-layer optimization, can increase the relevance between 

input features and the target class. In addition, this strategy can decrease the redundancy among the 

selected features, so it resulted in the improvement of the performance of standard BGSA in feature 

selection. The details of the selected features and performance metrics are reported in Table 4-6. 
 

Table 4-6: The best experimental results of MI-BGSA, BGSA and BPSO feature selection methods using SVM classifier 

FS Method Accuracy 

(%) 

DR (%) FP (%) Execution 
Time (s) 

# Feature 

subset 

Selected Features 

MI-BGSA 88.362 86.308 8.887 727.465 5 {3, 4, 5, 6, 25} 

BGSA 85.620 81.173 8.423 508.215 13 {1, 3, 5, 7, 8, 9, 18, 20, 
22, 23, 26,27, 28} 

BPSO 85.880 81.418 8.142 571.046 11 {3, 4, 5, 9, 10, 13, 18, 

22, 25, 26, 41} 
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According to Table 4-6, the accuracy rate and DR were improved by 2.742% and 5.135% as compared 

to the standard BGSA, respectively. These rates were improved by 2.482% and 4.890% as compared 

to the BPSO feature selection method, respectively. It should be noted that the proposed feature 

selection algorithm selected only a small portion of the original features as compared to other feature 

selection methods (only 5 features among 41 features as compared to 13 and 11 selected features in 

BGSA and BPSO methods, respectively). The MI-BGSA attempts to determine the inter-variable 

relationship within a reduced subset which can predict output accurately. According to the 

experimental results reported in Table 4-6, the proposed feature selection algorithm can make 

dramatic reductions in the feature space and can consequently improve the classification 

performance.  

 

In this study, the mentioned anomaly detection strategy is used for determining the best feature subset 

of every kind of attack in NSL-KDD. For example, for finding the optimal features in detecting DoS 

attacks, all samples that are labeled with DoS attack known as an anomaly, and the reminder samples 

are assumed as normal. Table 4-7 reports the optimal features for every kind of attack in NSL-KDD 

dataset. As can be seen in Table 4-7, the optimal subset of features of NSL-KDD dataset is the union 

of the obtained optimal features. 

 
Table 4-7: The specification of the optimal feature of NSL-KDD obtained by using MI-BGSA feature selection 

Attack Type # Feature subset Selected Features 

DoS 8 {4, 5, 23, 25, 26, 29, 37, 38} 

Prob 2 {23, 37} 

U2R 18 {2, 3, 4, 5, 7, 8, 10, 11, 15, 16, 21, 24, 26, 27, 28, 30, 31, 
40} 

R2L 18 {2, 8, 10, 11, 12, 14, 15, 18, 19, 21, 22, 23, 26, 28, 29, 

30, 34, 40} 

Total 29 {2, 3, 4, 5, 7, 8, 10, 11, 12, 14, 15, 16, 18, 19, 21, 22, 23, 

24, 25, 26, 27, 28, 29, 30, 31, 34, 37, 38, 40} 

 

4.2 The Experimental Results of the Proposed Cyber-Attack 

Detection Technique 
 

This thesis presents an offline misuse-based IDS for detecting the cyber-attacks of IoT named 

MOPF. As mentioned in section 3.2.2.4, the proposed method was composed of three modules 

(functional stages). These modules (i.e., partitioning, pruning, and detecting) were employed for 

improving the performance of a traditional OPF in IDSs. The partitioning module was used for 

addressing the scalability of large datasets, detecting low-frequent attacks, and speeding up the OPF. 

The pruning module was used for pruning the training and evaluation sets by identifying the most 

informative samples. Finally, the anomaly detection and the attack classification were performed by 

the proposed AOPF in the detecting module. Therefore, at first, the AOPF is compared with the 

traditional OPF in the experiments of this study. Then, to evaluate the performance of partitioning 

and pruning modules in the proposed model, the results of applying AOPF+P (partitioning), 

AOPF+Pr (pruning), and AOPF+P+Pr (called MOPF) are compared with the traditional OPF. To 

evaluate the performance of the proposed algorithm, OPF, AOPF, pruning, and partitioning modules 

were implemented in MATLAB R2014a on a PC with an Intel(R) Core (TM) i5-4460, CPU 3.20 

GHz, and 8 GB RAM. Notably, the K-Means clustering algorithm (which was already implemented 

in MATLAB) was used in the partitioning module. 
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Table 4-8: Size of the training and test sets 

Data type Number of instances in the 
training set 

Number of instances in the 
test set 

Normal 3,490 1,526 
DoS 2,489 1,028 
Probe 684 284 
R2L 228 109 
U2R 109 53 

 
In this study, 7,000 and 3,000 instances were randomly selected from the NSL-KDD as the training 

and test datasets, respectively. Table 4-8 lists the number of training and test instances. It is worthy 

to note that in all experiments, 4,000 initial training samples were used as the training set and the 

remaining 3,000 samples were used as the evaluation set. Notably, the distribution of data types in 

both training and test sets was almost the same as the NSL-KDD dataset. It means that the 

distribution of each data type (i.e., Normal, DoS, Probe, U2R, and R2L) and even the difficulty level 

of instances were considered in their random selection. Furthermore, in the applied dataset, just the 

obtained optimal feature subset of the preprocessing step is considered. 

 
Table 4-9: Parameters setting of the proposed method in simulations 

Parameter Value Phase/Stage 

T 5 The learning phase of the OPF 
k 4 Partitioning stage 
  65% Pruning stage 

  0.696 Detecting stage 

 
As discussed earlier, the proposed MOPF model was composed of several stages. The parameters 

setting in different stages are reported in Table 4-9. As seen in Table 4-9, the maximum iteration 

number of the learning algorithm in all versions of the OPF was set to 5 ( 5T  ). The reason is based 

on the experiments of Papa et al. (Joao P Papa et al., 2009) about the adequacy of repeating the 

learning procedure for a few iterations. The number of clusters in the K-Means clustering algorithm 

was set to 4. To select the best value of k in the K-Means clustering algorithm, this algorithm was 

iterated for different values of k and after each execution; the DB index was computed for each k. 

As shown in Figure 4-4, the value of DB index was minimized when 4k  ; therefore, the best value 

of k was assumed as 4. 

 

 
Figure 4-4: The DB index value versus the number of clusters 
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As reported in Table 4, the optimum values of   and   were 65% and 0.696, respectively. These 

settings were used as thresholds in the pruning and detecting modules, respectively. It is noted that 

these parameters were obtained by the GA, and Algorithms 4 and 6 were run for obtaining the fitness 

values. As mentioned earlier, two new subsets of NSL-KDD dataset were used as the training set and 

the test set in Algorithms 4 and 6. For this purpose, 1,500 and 750 instances were randomly selected 

from the NSL-KDD dataset as the new training set (TR) and test set (TS), respectively. The GA, 

which was already implemented in MATLAB, was used for finding the optimum values of   and  . 

The population size and the number of generations of both implementations of GA (which use 

Algorithms 4 and 6 as their fitness functions) were set to 5 and 10 in our simulations, respectively. 

  

For computing the BC or the PR in the pruning stage, a directed graph should be constructed from 

the input samples. In constructing the directed graph, the m best neighbor nodes (as 
ix neighbors) 

were selected based on the weight of the arcs in the complete weighted graph. For selecting the best 

value of m, we were inspired by the neighborhood selection problem in the recommendation systems 

and k-NN algorithm (which is used for the classification and regression). Generally, two approaches 

have been used in the recommendation systems for selecting the best neighbors of an active user: (a) 

selecting a fixed number of the best neighbors and (b) selecting the best neighbors based on a 

threshold on the similarity weights. Herlocker et al. (Herlocker, Konstan, & Riedl, 2002) 

demonstrated that the first approach which uses a fixed number of neighbors (i.e., 20 up to 60) 

performs better than the second approach. On the other hand, the appropriate value for m in k-NN 

algorithm is achieved by calculating the square root of the number of instances in the training set (as 

an empirical rule-of-thumb that was popularized by Duda et al. (Duda, Hart, & Stork, 2012)).  

 

To evaluate the effectiveness of BC and PR measures in the pruning stage, they were compared in 

terms of Euclidean distance between the classification point with coordinates of  ,  FAR DR and the 

perfect classification point in the ROC, when a lower distance shows better classification 

performance. The experimental results of these performance evaluations are shown in Figures 4-5 

and 4-6. 

 

 
Figure 4-5: The comparison of AOPF performance when using different pruning strategies in intrusion detection 

application 
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Figure 4-6: The average Euclidean distance of AOPF when using different pruning strategies 

 
Figure 4-5 shows the performance comparison of four classifiers (based on the AOPF+Pr model) 

when using different pruning strategies in terms of Euclidean distance at 10 runs. It is noted that 

different datasets consisted of 1,000 samples were used in each execution as the training set and 500 

samples as the test set (which were randomly selected from the original NSL-KDD dataset). At first, 

each pruning module computed the BC and the PR of each training sample. Secondly, 50% of the 

samples that had the worst BC values were selected as the training samples in the first simulated 

AOPF shown in Figure 4-5. Then, 50% of the samples that had the best BC values were selected as 

training samples in the second simulated AOPF shown in Figure 4-5. Similarly, this scenario was 

repeated for the samples with the worst and the best values of PR for the third and fourth simulated 

AOPFs shown in Figure 4-5, respectively. As seen in Figure 4-5, according to both BC and PR 

metrics, selecting some samples which had the worst BC (or PR) values led to better performance as 

compared to samples that had the best BC (or PR) values. For a more accurate comparison, the 

average Euclidean distance over 10 executions (for each type of pruning depicted in Figure 4-5) is 

shown in Figure 4-6. As seen in Figure 4-6, AOPF+Pr results in the best classification performance 

when the worst samples were used based on their BC value. Therefore, it is concluded that in the 

OPF machine learning, unlike social network analysis, some samples which have the worst BC (or 

PR) are the best informative samples for our classification problem. Furthermore, as seen in Figure 

4-5, using the BC measure for identifying the most informative samples is better than using the PR 

measure. Hence, the BC measure was used as a suitable metric for finding the most informative 

samples in the pruning module of the proposed model. 

 
Table 4-10: Accuracy rate and execution time of investigated OPF-based models 

Model Accuracy (%) Training time (s) Testing time (s) Training + Testing time (s) 

OPF 76.88 136.94 4.05 140.99 

AOPF 90.53 139.94 511.89 651.83 

AOPF+P 91.09 49.43 147.64 197.06 
AOPF+Pr 90.27 57.60 269.81 327.41 

MOPF 91.74 19.93 72.35 92.28 
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In this section, the performance of the proposed method is compared to the traditional OPF in terms 

of evaluation metrics introduced in section 4.2. As mentioned earlier, the proposed MOPF was 

composed of independent modules such as partitioning, pruning, and detecting. To evaluate the 

performance of the proposed model, four variants of modifications (i.e., AOPF, AOPF+P, 

AOPF+Pr, MOPF (AOPF+P+Pr)) are compared with the traditional OPF. The details of simulation 

results, when using the mentioned investigated models, are reported in Tables 4-10, 4-11, and 4-12 

for evaluating the IDS classification performance. 

 

The accuracy rate of the investigated proposed models and training and execution times are reported 

in Table 4-10. It is noted that the computation time of BC measure for each training sample is time-

consuming, so for improving the speed of MOPF and AOPF+Pr (which use the value of each 

sample’s BC in their pruning module), the BC calculation was performed offline. Moreover, the K-

Means clustering, which was run in the partitioning modules of MOPF and AOPF+P, was also 

performed offline. The GA was run offline and its execution time is not included in Table 4-10, as 

well. 

 
Table 4-11: Performance comparison of investigated models in terms of DR and FAR 

Model DR (%) FAR (%) 

OPF 90.30 4.19 

AOPF 96.13 10.55 

AOPF+P 93.83 1.96 
AOPF+Pr 96.27 9.23 
MOPF 96.20 1.44 

 

As seen in Table 4-10, the accuracy rate is improved considerably when using the MOPF algorithm 

as compared to the traditional OPF. However, the accuracy improvement is achieved by using each 

of the proposed modules in the classification problem (such as AOPF+P or AOPF+Pr). The 

modification of optimum-path cost function in the classification phase of AOPF has led to high 

computational overload and consequently, high testing time. On the other hand, partitioning and 

pruning modules reduce the training time significantly.  

 
This significant improvement is due to the computation time of MST. As mentioned earlier, one of 

the key operations in the training phase of the OPF algorithm is the identification of the optimum 

set of prototypes. This set is obtained using the closest nodes of MST which have different labels. 

Therefore, an MST should be computed based on the complete weighted graph (which was generated 

by using the training samples) for finding the prototypes from the training set. In this study, the prime 

algorithm (which was already implemented in MATLAB) was used to compute the MST in the 

training phase. The time complexity of this algorithm is   .logO m n , where n and m are the number 

of nodes and edges, respectively. As noted earlier, the initial training set consisted of 7,000 samples 

in this study, where 3,000 samples were used as the evaluation set and the remaining 4,000 samples 

were used for training the OPF. Hence, the complete weighted graph, which was generated from 

these training samples, has 4,000 nodes and 7,998,000 edges. Indubitably, the computational time of 

MST from this graph will be high. By using the proposed partitioning module, the original training 

set was partitioned into four clusters. Subsequently, an OPF was generated for each cluster by means 

of a lighter graph (in terms of the number of nodes and edges) based on the cluster’s training subset. 

This strategy reduces the computational time of MST and consequently reduces the training time of 

the OPF algorithm. Notably, this scenario is repeated for the pruning module. 
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Table 4-12: Confusion matrix and CPE of investigated models tested on NSL-KDD dataset 

Model Actual 

Predicted 

CPE Normal DoS Probe R2L U2R 

OPF 

Normal 1462 23 11 26 4 

0.1950 
DoS 29 994 4 1 0 
Probe 33 23 225 2 1 
R2L 69 4 1 33 2 
U2R 12 19 3 3 15 

AOPF 

Normal 1365 47 54 45 15 

0.1473 

DoS 10 1010 8 0 0 
Probe 20 7 257 0 4 
R2L 22 0 0 83 4 
U2R 5 0 1 4 43 

AOPF+P 

Normal 1496 14 10 3 3 

0.0983 
DoS 53 961 8 3 3 
Probe 21 3 258 1 1 
R2L 10 0 4 93 2 
U2R 7 3 2 4 37 

AOPF+Pr 

Normal 1373 46 54 38 15 

0.1460 
DoS 6 1014 8 0 0 
Probe 20 7 257 0 0 
R2L 32 0 0 74 3 
U2R 5 0 1 4 43 

MOPF 

Normal 1504 5 7 5 5 

0.0753 

DoS 20 996 7 4 1 
Probe 27 7 244 2 4 
R2L 7 4 0 85 13 
U2R 2 1 2 5 43 

 

As shown in Table 4-10, the traditional OPF performs as the fastest model in terms of testing time; 

however, if the whole execution time (i.e., training and testing times) is considered, the MOPF will 

be faster than the traditional OPF (about 35% reduction in the execution time). This shows the 

superior computational efficiency of the proposed MOPF for the time of classifier training and 

testing (i.e., detection). 

 

As seen in Table 4-11, the DR is improved when using AOPF and AOPF+Pr models as compared 

to other models. However, FAR of the mentioned models is high (and not acceptable) as compared 

to AOPF+P and MOPF models. The MOPF model consists of AOPF, partitioning, and pruning 

modules; therefore, we can conclude that the proposed MOPF can achieve the best performance 

among the investigated methods when considering both DR and FAR. 

 

The confusion matrix and CPE of the five mentioned investigated models are reported in Table 4-

12. Notably, the proposed MOPF model offers the best performance in terms of CPE as compared 

to the traditional OPF and other three investigated models.  

 

One of the main advantages of the proposed MOPF method is its superior performance against low-

frequent attacks such as U2R and R2L. In this way, the DR of different attack types, when using the 

proposed MOPF or the traditional OPF, is shown in Figure 4-7. As seen in Figure 4-7, the proposed 

MOPF model offers better DR than the traditional OPF for all attack types. In addition, the FAR of 



60 

 

different attack types, when using the proposed MOPF or the traditional OPF, is shown in Figure 4-

8. As seen in Figure 4-8, the proposed MOPF model offers better FAR for DoS, Probe, and U2R 

attacks than the traditional OPF. As seen in Figures 4-7 and 4-8, the FAR of R2L attack when using 

the traditional OPF is slightly better than the proposed MOPF model. However, the DR of U2R and 

R2L attacks and also the FAR of U2R attacks are considerably improved when using the proposed 

MOPF model. 

 

 
 

Figure 4-7: Performance comparison of the MOPF and the traditional OPF in terms of DR 

 
 

 
Figure 4-8: Performance comparison of the MOPF and the traditional OPF in terms of FAR 
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4.2 The Experimental Results of the Proposed Insider-Attack 

Detection Technique 

 
In order to detect sinkhole and selective forwarding attacks as two kinds of dangerous insider-attacks 

of IoT, this thesis presents a hybrid real-time IDS based on some distributed agents called SA-IDS 

and a centralized agent named AA-IDS. Indeed, the proposed model is based on the agent 

programming (i.e., SA-IDS and AA-IDS agents are located at the router nodes and the 6BR, 

respectively); so, we developed a special WSN simulator in this study that is based on the RPL 

protocol using .Net Framework technology and C#.Net programming. So, a flexible evaluation 

platform was provided for developing the proposed intrusion detection framework, and also 

simulating the selective forwarding and sinkhole attacks. The assumptions in the developed simulator 

are given in Table 4-13. 

 
Table 4-13: Assumptions in the developed simulator in this study 

Parameter Value 

Network scale 100 m × 100 m 

Routing protocol RPL 

Transmission range 10 m 
Packet size 127 bytes 
DIO size (Winter et al., 2012) 24 bytes 
Node’s energy Infinite 

 
It is noted that we did not study the energy overhead of the proposed framework in this study. 

Therefore, we assumed that the energy of all kinds of nodes was infinite, which means they were not 

constrained in terms of energy consumption. Moreover, we assumed that the network structure is 

static in all simulations. In other words, the sensor nodes were homogenous and distributed uniformly 

in the environment. In the 6BR implementation, which was based on the MapReduce architecture, 

the MATLAB server was used as the reducer node for projecting the clustering models with the aim 

of anomaly detection. We implemented an anomaly detection method that was based on the OPFC 

algorithm using MATLAB R2014a on a PC with an Intel(R) Core (TM) i5-4460, CPU 3.20 GHz, and 

8 GB RAM. The anomaly detection was performed by the 6BR in which the corresponding reducer 

(i.e., MATLAB server) received a new sample of source i from the mapper (i.e., the 6BR). Then, a 

new clustering model was projected by using this new sample and other old samples. According to 

the clustering result, the label of the new sample was determined by the reducer. 

 

One of the challenging issues in the OPFC algorithm is finding the appropriate value of parameter 

k. Generally, the value of k is selected in the interval  min maxk ,k  where 1 min maxk k Z    (Rocha et 

al., 2009). Rocha et al. (Rocha et al., 2009)used a graph-cut metric for finding the optimum value of 

k. The proposed anomaly detection should work in real-time; so, we experimentally assumed that 

#  

3

samples
k

 
  
 

 at the start of projecting the OPFC model in this study.  

 

The specification-based agents use (i.e., ParentSetThreshold and PreferredParentThreshold in Algorithm 8, 

and PacketReceivingThreshold and TimeDelayThreshold in Algorithm 9) in detecting sinkhole and selective 

forwarding attacks. The nodes were different in the network (according to their positions, children, 

and parents); therefore, each node had its own thresholds that should be defined at runtime. We 

assumed that the malicious nodes begin to launch attacks after 2 minutes; hence, the thresholds of 
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each node were specified in opening 2 minutes of the simulation based on the normal behavior. For 

example, to determine the ParentSetThreshold (which specifies the rate of change in parent set of a 

router node at each time-slot w ), the algorithm computed the rate of change in router’s parent set 

at each w in opening 2 minutes; then, the average of computed values was returned as the 

ParentSetThreshold. 

 

 
 

Figure 4-9: A simulation screenshot of the Selective forwarding attack launched by node 3 

 

 
Figure 4-10: A simulation screenshot of the sinkhole attack launched by node 6 

 

In this study, the performance of the proposed method was evaluated in terms of DR, FPR, and AR 

of detecting malicious nodes. This experiment was conducted for evaluating the performance of the 

proposed framework to deal with the selective forwarding attack, sinkhole attack, and joint 
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occurrence of both attacks. Three simulations were performed in this experiment. The screenshots 

of these simulations are shown in Figures 4-9, 4-10, and 4-11, respectively. Through these 

simulations, the performance of the proposed framework was evaluated to deal with the selective 

forwarding attacks (Figure 4-9), the sinkhole attacks (Figure 4-10), and a joint occurrence of these 

attacks (Figure 4-11) in the 6LoWPAN. The assumptions in these simulations are given in Tables 4-

14, 4-15, and 4-16, respectively. 

 
 

 
Figure 4-11: A simulation screenshot of the selective forwarding and sinkhole attacks launched simultaneously by node 10 

and node 3, respectively 

 
Table 4-14: Assumptions in the first simulation (shown in Figure 4-9) 

Feature Value 

# Source 3 nodes with ids {4, 6, 8} 

# Router 4 nodes with ids {2, 3, 5, 7} 

Root id 1 
Malicious node id 3 as selective forwarding 

agent 

w  30 s 

Simulation time 20 min 

 

 
Table 4-15: Assumptions in the second simulation (shown in Figure 4-10) 

Feature Value 

# Source the  nodes with ids {8, 9} 

# Router 6 nodes with ids {2, 3, 4, 5, 
6, 7} 

Root id 1 
Malicious node 6 as sinkhole agent 

w  30 s 

Simulation time 20 min 
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Table 4-16: Assumptions in the third simulation (shown in Figure 4-11) 

Feature Value 

# Source 3 nodes with ids {6, 8, 11} 

# Router 6 nodes with ids {2, 3, 5, 7, 
9, 10} 

Root id 1 
Malicious node 3 and 10 as sinkhole and 

selective forwarding agents, 
respectively 

w  30 s 

Simulation time 30 min 

 
The performance of the proposed model in these simulations is reported in Tables 4-17, 4-18, and 

4-19, respectively. Notably, the AR metric is calculated as the division of the total number of 

malicious nodes (according to each sample) that are identified correctly to the total number of attack 

samples that are classified correctly.  

 
Table 4-17: Performance of the proposed model in the first simulation (shown in Figure 4-9) 

Method DR (%) FPR (%) 
AR in detecting malicious 
nodes (%) 

Anomaly-based detection 92.68 10.12 NA* 
Hybrid (Anomaly-based+Specification-
based) detection 

85.36 1.26 91.43 

* Not-Applicable 
 

 

Table 4-18: Performance of the proposed model in the second simulation (shown in Figure 4-10) 

Method DR (%) FPR (%) 
AR in detecting malicious 
nodes (%) 

Anomaly-based detection 100 5.97 NA* 
Hybrid (Anomaly-based+Specification-
based) detection 

100 2.98 69.23 

* Not-Applicable 
 

Table 4-19: Performance of the proposed model in the third simulation (shown in Figure 4-11) 

Method DR (%) FPR (%) 
AR in detecting malicious 
nodes (%) 

Anomaly-based detection 80.95 29.63 NA* 
Hybrid (Anomaly-based+Specification-
based) detection 

76.19 5.92 87.50 

* Not-Applicable 

 
As seen in Tables 4-17 and 4-19, the DR of the proposed hybrid method is lower than the anomaly-

based detection method (performed by the AA-IDS agent); however, the FPR is improved 

considerably when employing the hybrid model in which the specification-based detection is also 

performed by the SA-IDS agents besides the anomaly-based detection. Another advantage of using 

the specification-based detection in the proposed framework is the ability to detect malicious nodes 

as the cause of IoT’s insider-attacks (as shown in the last column of Tables 4-17, 4-18, and 4-19).  

 

Table 4-18 shows that DR of the anomaly-based detection and the hybrid detection methods in the 

second simulation is 100% (when the sinkhole attack is launched). However, as shown in Table 4-17, 
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DR of the anomaly-based detection and the hybrid detection methods in the first simulation was 

92.68% and 85.36%, respectively (when the selective forwarding attack was launched). This refers to 

the behavior of selective forwarding and sinkhole attacks. As mentioned earlier, the AA-IDS agent 

creates a new sample for each source node by extracting four traffic-related features from the raw 

received packet of the source node in each time-slot. These features are packet receiving rate, packet 

dropping rate, average latency, and maximum hop-count. The sinkhole attack has a considerable 

effect on the maximum hop-count feature, while the selective forwarding attack changes the packet 

dropping rate, and consequently the packet receiving rate. Packet dropping is one of the popular 

events in the networks (e.g., because of the congestion); so, distinguishing the valid packet dropping 

(due to the popular behavior of the networks) from the invalid packet dropping (because of the 

malicious behavior of the selective forwarding attack) is hard for the proposed anomaly detection 

model. As seen in Table 4-17, it caused the DR reduction of the proposed hybrid model in the first 

simulation as compared to the second simulation in which a sinkhole attack was launched (Table 4-

18). Notably, the low AR in detecting malicious nodes in Table 4-18 is caused by the process of 

detecting the sinkhole attack in Algorithm 8. According to Algorithm 8, the detection of a suspicious 

node is based on the rate of change in preferred parent and also the rate of change in the parent set 

at each time-slot. In some cases, it may cause mistakes about a valid parent or an invalid parent. For 

example, the SA-IDS agent located in node 7 (Figure 4-10) may select node 5 (i.e., a valid parent) as 

a suspicious node instead of the actual malicious node (i.e., node 6). 
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 Conclusions 

 

 
 

Over this chapter, the presented intrusion detection technique will skim, briefly. Furthermore, the 

limitations of the study and future work will be reviewed.  

 

5.1 Research Summary 
6LoWPAN as an IP-based WSN is one of the main efforts to make the real IoT in which the resource-

constrained devices (e.g., sensors) can connect to the Internet through a border gateway called 6BR. 

This thesis proposes a novel ML-based intrusion detection technique in order to identify the possible 

attacks of 6LoWPAN as well as determine their types. Indeed, the insecure nature of 6LowPANs 

makes IoT becomes vulnerable in front of different kinds of attacks from the Internet and IP-based 

WSNs sides. Therefore, this thesis proposed a multi-faceted hybrid intrusion detection method in 

order to detect different kinds of attacks. 

 

Generally, the proposed intrusion detection technique consists of two following components: 

1) Cyber-attack identification that can also determine the kinds of detected attacks. 

2) Insider-attack identification that is also able to determine the perpetrators of them (the 

malicious nodes). 

The first component, which is employed for detecting cyber-attacks launched by the Internet side is 

an offline misused-based IDS based on a novel graph-based machine learning algorithm called 

supervised Optimum-Path Forest. Actually, the training and classification phases of OPF were 

modified based on the K-Means clustering algorithm and the social network analysis. Notably, in 

order to overcome the high-dimensional benchmark dataset used for evaluating the proposed 

intrusion detection engine, a novel population-based heuristic search is proposed based on Binary 

Gravitational Search Algorithm to reduce the dataset’s dimension. Actually, the proposed method is 

a hybrid feature selection method used Mutual Information as a filter-based algorithm (local search) 

to identify the informative features determined by BGSA as a wrapper-based algorithm (global 

search). The experimental results of the applied models of this component show the superiority of 

them in comparison with other methods. 

 

The second component is a novel real-time hybrid IDS that is proposed for detecting routing attacks 

(sinkhole and selective forwarding attacks) in 6LoWPAN as insider IoT’s attacks. Actually, in this 

component, in order to detect anomalies and identify the malicious nodes as the cause of anomalies, 

the specification-based IDS agents located in 6LoWPAN nodes send their analytical results to the 

6BR. Then the anomaly-based IDS agent located in 6BR detects anomalies and identifies the 

malicious nodes. Furthermore, the anomaly detection engine, which is based on MapReduce 

architecture, uses unsupervised OPF (OPFC) for identifying the anomalies. The final decision about 

detected anomalies will be made in the process of a voting mechanism. 
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5.2 Conclusion 
As far as we know, since there are no a considerable study that uses ML-technique in order to detect 

intrusions of IoT, it seems the idea of using a learning algorithm in the security area of IoT is a 

valuable approach. In addition, the abilities of the proposed model that can detect both cyber-attacks 

and insider-attacks of IoT can distinguish this model from few existing approaches. By the way, the 

advantages of the presented technique can be summarized as follows: 

 

1) The ability to detect cyber-attacks by determining their types 

 Because of the resource-limitation objects in IoT, the considerable reduction of the dataset's 

dimensions is useful for avoiding the over-fitting problem, improving the performance of 

classification models, reducing the training and testing time, improving stability against noise, 

and reducing the measurement and storage requirements. 

 The proposed cyber detection technique is a fast method due to the high speed of OPF 

algorithm. 

 The superior characteristics of OPF, the high performance of K-Means algorithm in 

partitioning the heterogeneous samples into homogeneous clusters, and the distinctive abilities 

of the pruning strategy in sample reduction have led to a considerable improvement in the 

proposed model in detecting low frequent attacks. 

 

2) The ability to detect insider-attacks by determining their causes 

 This thesis tries to present a light specification-based IDS agent, because of the 

resource limitation of the host nodes in 6LoWPAN. For example, because the local analysis 

of the SA-IDS agents in router nodes is sent to 6BR through the usual traffic, there is no need 

for storing them in resource-constrained router nodes. This functionality can improve resource 

consumption, dramatically.  

 The proposed method sends the analysis results of local agents to the 6BR at regular intervals 

through normal data packets without using additional control messages. It is clear that this 

approach can lead to a significant reduction in the cost of communication. 

 Because the proposed anomaly detection engine is based on MapReduce, it can lead to 

accelerating the detection process due to the concurrent abilities. 

 The proposed model can determine the malicious nodes with low FAR. 

 

5.2 Research Limitations and Future Work 
Generally, the research limitations of this study are as follows: 

 

1) Lack of an IoT-based dataset for using over intrusion detection system: The Existence an 

appropriate dataset is a key requirement for every machine learning algorithm. Unfortunately, 

this study faced with various challenges due to the fact that there is not standard dataset for 

using in ML-based IDS. 

2) Lack of proper software/hardware infrastructure for experimental work: One of the main 

challenges of this project, especially in evaluating the proposed real-time IDS was the lack of 

proper infrastructure. For example, although the obtained centralized anomaly detection in 

6loWPAN was based on MapReduce architecture, I could not evaluate the performance of the 

proposed model in a distributed platform since there was not a proper software/hardware 

infrastructure. 
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Furthermore, the main future work of this thesis are as follows: 

 

1) Applying the proposed insider-attack detection technique in a distributed environment in 

order to evaluate the performance of the presented centralized anomaly detection, especially 

in terms of speed. 

2) Developing the proposed RPL-based WSN in order to obtain the ability to evaluate the power 

consumption and communication cost. 

3) Developing the proposed insider-attack detection technique in identifying other kinds of 

attacks besides to sinkhole and selective forwarding attacks. 

4) Improving the proposed cyber-attack detection by applying real Internet traffic rather than 

using the NSL-KDD dataset.  
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